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Abstract. Plastic collapse is one of the major causes of failure of pressurized pipes submitted to combined loads.  

Many models have proposed to estimate the maximum load combination that pressurized pipes can stand. The yield 

locus pattern is one of the most important attribute of these models. In this work yield locus models are proposed and 

compared with well established ones.  
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1. I�TRODUCTIO�   
  

Limit analysis theory can be used to predict plastic collapse of structures submitted to any combination of loads. 

This theory distinguishes from incremental plasticity approach by don’t following strains evolution, instead determines 

limit loads where plastic strain keep growing without any further increase of load. In other words, this theory evaluates 

the limit load that a structure is not longer able to maintain equilibrium with external applied loads. The application of 

limit analysis theory for structures formed by structural parts, like beams, was extensively studied, as in Hodge (1959). 

Chattopadhyay (2002), in a more recent investigation, studied the effect of internal pressure on in-plane collapse 

bending moment of pipes. Robertson (2005) stated that three main types of failure must be considered for the design of 

pipes: gross plastic deformation, ratchetting and fatigue.  

A review of  representatives yield locus models for pipes submitted to combined loadings are done, as in Bai and 

Hauch (1999) where the interaction between pressure P, longitudinal force ! and bending moment M in capacity of 

pipes to resist plastic collapse was analyzed, generating the following yield locus: 
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Where, m, n and p are respectively the normalized bending moment, the normalized longitudinal load and the 

normalized internal  pressure; M0, !0 and P0 are respectively the bending moment, the longitudinal load and the internal 

pressure that yields entirely the cross section and α  is a correction factor. 

The Modified Goodall model, shown at Kim and Oh (2006), using small displacement analysis, proposed a yield 

locus expression for open-ended elbows under combined loading of internal pressure and in-plane bending: 
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Substituting (04) in (03) and using (02.a):  
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where, t is the wall thickness, rm is the average radius, y
σ is the limit stress of an elastic-perfectly plastic material, 

2

m

Rt

r
λ =  is the bend characteristic and R is bend radius.  

 

2. PROPOSED MODEL   
 

At Kenedi et al. (2009) the principal aspects of limit analysis theory, as expressions of equilibrium, kinematics and 

constitutive relations for straight and curved pipes submitted to concentrated or distributed loads, were covered. The 

proposition of a yielding function that includes internal pressure (as a dead load) was done as well. The material was 

considered elastic-perfectly plastic and it was supposed small deformation. 

A segment of a pipe submitted to combination of tensile longitudinal load !, positive bending moment M and 

internal pressure P is show at Fig.1, as well the cross section area and the geometrical variables of a thin-walled pipe: 

 

    
     (a)            (b)  

     

Figure 1. (a) Segment of a pipe submitted to combination of tensile longitudinal load �, positive bending moment 

M and internal pressure P and (b) cross section area of a thin-walled pipe for tensile longitudinal load and 

bending moment. 
 

Where, CA and !A are respectively centroidal and neutral axis, yn is the distance from CA to !A. The transversal 

area A is divided in two areas by !A, the superior area As (shaded at Fig.1.b) and the inferior area Ai. s
y  is the distance 

between centroid of area A (shown with a 0) and the centroid of As and i
y  is the distance between centroid of area A 

and the centroid of Ai.  γ is an angle ranging from 
2

π
−  to 

2

π rad.  The minor area is approximated by ( ) mrtγπ 2−  and the 

major area is approximated by ( ) mrtγπ 2+ . At fig. 1.b the minor area is As and corresponds to the shaded area. The minor 

distance is ( )
mr
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The application of equilibrium to a pipe segment, submitted to tensile longitudinal force, positive bending moment 

and internal pressure, shown at Fig.1.a, in combination with the utilization of Mises criterion, were used to obtain the 

yielding function expressions.  
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where, 
1σ  and 

2σ are principal stresses. 
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For open-ended pipes, applying (06.a), (06.b), (02.c) and (07.a), 

yσ
σ 2 can be cast as: 
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Where 

tσ  and 
cσ  are, respectively, the stresses at tensile and compressive areas. For close-ended pipes, applying 

(06.a), (06.b), (02.c) and (07.b), 

yσ
σ 2 can be cast as: 
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Figure 2 shows a graphical representation of expressions (08.b), (08.c), (09.b) and (09.c): 

 

 
Figure 2. Locus of normalized principal stresses, 

2 y
σ σ , as a function of p. 

 

Noting that at (6.b) that σ1 is determined only by internal pressure P but not by longitudinal load ! or by bending 

moment M. Figure 2 shows the maximum values of 2 yσ σ  for various levels of normalized internal pressure, for two 

extremities patterns: for pipe close-ended and for pipe open-ended.  For p = 0 both curves has the same performance 

and they are limited at p = 1. As p rises the behavior of the two patterns differentiates, with pipe open-ended (dashed 

curves) reaching higher levels of combinations  2 yσ σ and p than pipe close-ended (continuous curves). 

The equilibrium expressions for open-ended pipe can be cast, using (08.b) and (08.c). For the cross section area 

shown at fig. 1.b ( s c i tandσ σ σ σ= = ): 
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The equilibrium expressions for close-ended pipe can be cast, using (09.b) and (09.c), as: 
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Solving (10) the yield locus of open-ended pressurized pipe submitted to longitudinal and bending loads are obtained:  
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Similarly, solving (11) the yield locus of close-ended pressurized pipe submitted to longitudinal and bending loads 

is obtained:  
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For a particular case of null longitudinal load, n = 0, expressions (13) and (15), can be rewritten, respectively, to: 
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Figure 3 shows a graphical representation of expressions (16) and (17), for 0 1p≤ ≤  and 0 1m≤ ≤ : 

 
Figure 3. Comparative graphic p versus m of yield locus (n = 0) for the proposed model with different endings. 

 

Figure 3 shows the yield locus for the proposed model, for n = 0, with different endings. For p = 0 and for p = 1 

both curves have the same performance. For 0 1p< < the close-ended (blue curve) permits higher combinations of m 

and p than open-ended (red curve). 

For a particular case of null internal pressure, p = 0, the expressions (13), (14) and (15) can be cast as: 
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Figure 4 shows the limiting yielding surfaces, respectively for open-ended and close-ended pipes, calculated from 

the application of expressions (13), (14) and (15), submitted to a combination of longitudinal load !, bending moment 

M and internal pressure P: 

 

 
 

   (a)             (b) 

 

     Figure 4. Limiting yielding surfaces for: (a) open-ended and (b) close-ended pipes.  

 

Figure 4 presents two graphics for values of n versus m, for normalized pressures 0 0.8p≤ ≤ , with increments of 

0.2p. Note that the arrows shows direction that p increases. At Figs. 4.a and 4.b, for p = 0 the limiting yielding surfaces 

are the large ones (blue curves). As p increases the limiting yielding surfaces become smaller. For open-ended pipes the 

limiting yielding surfaces moves to the rigth side of the graph and become smaller as p increses, while for close-ended 

pipes the limiting yielding surfaces maintain concentric and also become smaller as p increses. 

 

 

3. COMPARISO�   
 

The Modified Goodall model for combined loading of internal pressure and in-plane bending of pipes, expression 

(05), is compared with expression (16) of the open-ended proposed model, with results shown graphically at figure 5: 

 

 
 

     Figure 5. Comparative graphic p versus m of yield locus of analyzed models.  

 

Figure 5 shows, for any λ and n = 0, the performance of the models of yield locus for pipes submitted to combined 

loading of internal pressure and in-plane bending. Note that M0 definitions for the Modified Goodall model, expression 

(04.b), and for the open-ended presented model, expression (12.b), aren’t the same. The proposed model presented good 

agreement with the Modified Goodall model used as reference.  
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4. CO�CLUSIO�S  
 

A model to determine the yield locus of pressurized pipes submitted to combined loadings of longitudinal force, 

bending moment and internal pressure was presented. The expressions for all three loadings as well as with especial 

cases of no internal pressure or no longitudinal force were analyzed.  The behavior differences between open-ended and 

close-ended pipe terminations were also analyzed. The proposed model with open-ended and no longitudinal force was 

compared with the Modified Goodall model with good agreement.  
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