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Abstract. This paper investigates a systematic procedure on applying H2 optimal control algorithm for controlling the 
lateral vibration of earthquake excited structures. Based on a dynamic model of the structural system, the filter on an 
earthquake input model, sensor noise and control output are incorporated into the plant to produce an H2 optimal 
controller based on acceleration feedback. The performance of the controller in reducing the response of seismically 
excited structure is tested experimentally in a two-story building test-bed subjected to earthquake ground acceleration 
using a shaking table system and controlled by an active mass driver. 
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1. INTRODUCTION 
 
The control of structural vibration has significant increase in the last two decades. One of the application areas for 

control design has to do with the protection of civil engineering structures from dynamic loadings such as high wind 
and strong earthquakes (Housner et al., 1997). In the last 15 years, world-wide attention has been directed toward the 
use of control to mitigate the effects of these dynamic loads. Spencer and Sain (1997) reviewed the state-of-the art in 
structural vibration control for civil engineering applications. Among those studies, different kinds of control devices 
and control algorithms were presented. 

Optimal control design methods which are carried out in the frequency domain have recently been applied in 
control of civil structures and offer attractive features. It is well known that the dynamic behavior of structures, as well 
as the excitations, is often characterized by functions in the frequency domain (Spencer et al., 1994). The transfer 
function of a structure in the frequency domain can be obtained directly from modal tests, and random signals such as 
earthquake and wind loads can be modeled by a spectral density function. Frequency domain optimal control strategies 
allow the designer to directly deal with these natural representations of the structural model and excitation during 
control design. These methods also allow the designer to specify disturbance attenuation over a desired frequency 
range, as well as to roll-off the control action at high frequencies where measurement noise and uncertainties may 
plague the controlled structure. In the frequency domain, the desired controller can be achieved by a proper selection of 
frequency-dependent weighting functions and filters modeling earthquake disturbances. 

Two frequency domain methods for controller design which have received much attention recently are: H2 and H∞ 
control strategies (Doyle et al., 1989). The H2 and the H∞ control methods give optimal controllers by minimizing, 
respectively, the H2 and the H∞ norms of the transfer function from the input excitation to the structural responses. 
Suhardjo et al (1992) provided a numerical comparison between the H2 and H∞ approaches to active control of wind-
excited buildings. Spencer et al. (1994) was the first to apply H2 control strategy to civil engineering structures for 
seismic protection purposes. Dyke et al. (1996) developed a mathematical model for a scaled building structure through 
system identification in the frequency domain. In that paper, a H2 controller was designed using dynamic feedback of 
acceleration responses and its performance was verified by experiments. Min et al. (2005) combined optimally the 
weighting functions and filters to design a H2 controller applied to the three-story scaled model with an active mass 
driver. Abreu et al. (2009) presented a mixed H2/H∞ control strategy formulated by means of the LMI approach to 
attenuate the vibrations of a two-floor building model under seismic excitation. 

The main purpose of this paper is to test experimentally the H2 control technique for optimal control of earthquake 
excited structures. The control strategy is presented in terms of a general block diagram problem formulation. The 
controller uses the acceleration signal for feedback. The control design methods are tested on a vibration control 
experiment consisting of a two-story building test-bed equipped with an active mass driver and subjected to earthquake 
ground acceleration. A set of experimental tests is made to illustrate the application and delineate the advantages of the 
control methodology and the performance of the control strategy on the experimental structure is verified. 
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2. BUILDING STRUCTURAL MODEL WITH ACTIVE MASS DRIVER 

 
A structural dynamic system with an active mass driver (AMD) when subjected to earthquake, as shown in Fig. 1, 

can be described as 
 

( ) ( ) ( ) ( ) ( )tFtxtxtxtx Fgssssssss EIMKCM +−=++ &&&&&  (1) 

 
where x is the displacement vector of the structure relative to the ground, Mss, Css and Kss are respectively the mass, 
damping and stiffness matrices of the structure, I is the identity vector, the subscript g is the acceleration of the ground, 
F(t) is the control force applied to the structure by the AMD system, and EF is the AMD position vector. 
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Figure 1. Sketch of building structure with an AMD 
 

The control force F(t) applied to the structure by the AMD can be described as 
 

( ) ( ) ( ) ( ) ( )txmtutxctxktF Taaaaa &&& =−+=  (2) 
 

where xa is the displacement of the AMD relative to the top story, ma, ca and ka are the mass, damping and stiffness of 
the AMD, respectively, u(t) is the force generated by the actuator, and Tx&&  is the absolute acceleration of the AMD, 
denoted by 
 

( ) gnaT xxxtx &&&&&&&& ++=  (3) 

 
where nx&&  is the acceleration of floor where the AMD is installed. 

Using the state vector [ ]anan xxxxxxxx &&L&&L 2121=x  and combining equations (1) and (2) yields 
the following state equation 
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The [ ]T0111 L=dE  and [ ]T1000 L=uE  are the vector locations relative respectively to the ground 
and the AMD, and the matrices Ms, Ks and Cs are given respectively by 
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Considering [ ]an xxxx &&K&&&& 21=y  as the output of the structural system, that is the absolute acceleration of 

the floors and the actuator displacement, the vector of measured responses is given by 
 

( ) ( )tuDtxDC yugydy ++= &&xy  (6) 

 

where 
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3. H2 OPTIMAL CONTROLLER DESIGN 
 
Consider the general block diagram description of the control problem given in Fig. 2. In this figure, P and K 

represent, respectively, the generalized plant and the controller transfer functions, y is the output vector of measured 
structural responses, z is the vector of system responses to be controlled, u is the control input vector, and d is the input 
vector of excitations representing external disturbances (acceleration ground, wind, etc.) and sensor noise. 
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Figure 2. Block Diagram of General Control System with Output Feedback 
 
The generalized plant P contains the structural system plus filters and weighting functions in the frequency domain. 

The regulated output vector z may consist of any combination of the states of the system and components of the control 
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input vector u, thus allowing for a broad range of control design objectives to be formulated through appropriate choice 
of elements of z. As depicted in Fig. 3, weighting functions can be applied to the elements of z (Wz) to specify the 
frequency range over which each element of z is minimized, Wu weighting the control force vector u, and Wg and Wg to 
shape the spectral content of the disturbance modeling the earthquake excitation and the measurement noise n, 
respectively. The input excitation vector d consists of earthquake excitation gx&&  and measurement noise n. The output z 

comprises the frequency weighted regulated response (zr) and control signal. The rectangle denoted with a dashed line 
in Fig. 3 represents the augmented system model P. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Control block diagram for a building structure subjected to seismic excitation 
 
The regulated response (zr) denotes the quantities of the design interest that can be floor accelerations, floor 

displacements or inter-storey drifts, etc. In this work, the outputs to be regulated include the floor displacements and 
inter-storey drifts 

 
[ ]1231221 −−−−== nnnzr xxxxxxxxxCz LLx  (7) 

 
where Cz is the appropriate mapping matrix that dictates the components of the regulated response vector zr. 
 

The block diagram shown in Fig. 3 can be represented in terms of frequency by the equation 
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where the control vector is u = K y and the state space representation of P is given by 
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and 

gWA , 
gWB , 

gWC , 
gWD ;

nWA , 
nWB , 

nWC , 
nWD ;

uWA , 
uWB , 

uWC , 
uWD , and 

zWA  and 
zWC are the state space 

matrices of Wg, Wn, Wu and Wz, respectively. 
The task here is to design the controller K such that it stabilizes the system and, within the class of all controllers 

which do so, minimizes the H2 norm of the transfer function from the disturbances d to the regulated output vector z. 
Note that the H2 norm is given as 
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where 1−=j  and *
zdT  is the complex conjugate transpose of zdT . 

The H2 control solution procedure in Doyle et al. (1989) is based on the state space realization of the transfer 
function P (Eq. 9) particularly with D11 = 0. It can be solved using a standard H2 control technique assuming (A, B2) 
controllable and (C2, A) detectable. Hence, the full order H2 controller is expressed by 
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where 
 

cfcfk KDKKBCKAA 2222 +++=  (12.1) 

 
fk KB −=  (12.2) 

 
ck KC =  (12.3) 

 
where 
 

TT
f DBYCK 2112 −−=  (13.1) 

and 

1122 CDXBK TT
c −−=  (13.2) 

 
The matrices and X and Y are solutions to the corresponding algebraic Riccati equations 

 

( ) ( ) 0112211221122 =+−−+− CCXBXBCDBAXXCDBA TTTTT  (14.1) 

 
( ) ( ) 0112212121212 =+−−+− TTTTTTTTT BBYCYCYBDCABDCAY  (14.2) 

 
 
4. EXPERIMENTAL EXAMPLE 
 

In this section, an experimental example is presented to illustrate the usefulness of the control method presented in 
previous section. Consider the linear system consisting of a building model (see Fig. 4a), manufactured by Quanser 
Consulting Inc, with two floors, equipped with AMD and subjected to earthquake ground acceleration ( gx&& ) using the 

shake-table system. The test structure has 1125 mm in height, with each column being steel with a section of 1.75 × 108 
mm. The total mass of the structure is 4.52 kg, where the first floor mass (m1) is 1.16 kg, the second floor mass (m2) is 
1.38 kg. 

As shown in Fig. 4, the structure is fully instrumented to provide for a complete record of the motions undergone by 
the structure during testing. Each floor of the building structure is equipped witch a capacitive DC accelerometer that 
measures the absolute accelerations ( 1x&& and 2x&& ). The accelerometers are manufactured by Quanser Consulting Inc., and 
produce an output of ± 5 V with a range of ± 5 g. Two universal power modules are used as power amplifiers; one of 
them is used to power the shaking table and the other one is used to power the AMD. The data acquisition and control 
board used to collect data and drive the power amplifier is a MultiQ-PCI. Features of the board include an 8-channel 
analog-to-digital converter with an input range of ± 10 V, 14-bit resolution. In addition, the board contains an 8-channel 
digital-to-analog converter with an output range of ± 10 V and 12-bit resolution. 
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A diagram of the control system is shown in Fig. 4b. The structure is controlled by the AMD, subjected to shaking 

table movement excitation. The acceleration signals on both stories and the displacement of the AMD are used as 
feedback signals after amplification and passage through the A/D converter. Using the proposed controller, a control 
signal is produced (vm) based on the feedback signals. After passage through the D/A converter and amplification, the 
control signal is sent to the AMD device and it generates a control force (u). Digital control is achieved by use of the 
MultiQ-PCI board with the QuaRC realtime controller. The controller is developed using Matlab Simulink and 
executed in realtime using the QuaRC software. The Simulink code is automatically converted to C code and interfaced 
through the QuaRC software to run the control algorithm. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             (a)      (b) 

Figure 4. Two-floor building model (a) and schematic of experimental setup (b) 
 
The AMD consists of a moving cart with a DC motor that drives the cart along a geared rack through the motor 

pinion. Additionally, a potentiometer is attached to the motor to measure the cart position relative (xa) to its base. The 
maximum stroke is ± 65 mm and the total moving mass is 520 g (ma). The AMD provides the control force (u) to the 
structure through the control voltage (vm) (Quanser Consulting Corporation, 2003) 
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where kg is the gear-box ratio, rp is the pinion radius, Ra is the motor armature resistance, and km and kcem are 
respectively the cart motor torque and cart back-electromotive force constants. 

Table 1 lists and characterizes the main parameters (mechanical and electrical specifications) associated with the 
structural system equipped with AMD. 
 

Table 1. Main parameters associated with the structural system.  
 

Parameter Symbol  Value 

First Floor Mass m1 1.16 Kg 
Second Floor Mass m2 1.38 Kg 
Cart Mass ma 0.52 Kg 
First and Second Floors Linear Stiffness  k1, k2 500 N/m 
First and Second Floors Damping Coefficients c1, c2 10-3 N.s/m 
Gear-box Ratio kg  3.71 
Cart Motor Torque Constant km 0.00767 N.m/A 
Cart Back-ElectroMotive Force Constant kcem 0.00767 V.s/rad 
Cart Motor Armature Resistance Ra 2.6 Ω 
Cart Motor Pinion Radius rp 6.35 mm 
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It should be noted from Eq. (15) that the damping coefficient of the cart is 
2

2

pa

cemmg
a

rR

kkk
c = and the Coulomb friction 

(nonlinear) applied to the linear cart has been neglected. Furthermore, the stiffness associated to the cart (ka) has also 
been neglected. 
 
4.1. Controller Design 

 
The choice of weighting functions is crucial for obtaining meaningful controller performance results. In general, a 

direct application of the H2 optimization seeks to minimizing the H2 norm over all frequencies without placing more 
emphasis or penalty on certain frequency ranges. For the control model used in this study, frequency-dependent 
weighting function Wg is employed to reflect the frequency content of an earthquake. The most commonly used 
stochastic model of earthquakes is the square root of the Kanai-Tajimi spectrum (Spencer et al., 1994) 
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where the parameters of the Kanai-Tajimi spectrum used in this paper are S0 = 0.005, gζ = 0.5, and gω = 15 rad/s. 

The frequency responses of Wg and of the ground excitation chosen for this study (scaled El Centro earthquake) are 
shown in Fig. 5. 
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 Figure 5. Frequency responses of the Scaled El Centro earthquake and filter Wg 
 
In this paper, for the regulated output responses z and the measurement noise n in Fig. 3, the weighting functions 

Wz, Wu and Wn are respectively selected as 
 

33100 ××= IzW  (17.1) 
 

20.=uW  (17.2) 
 

3310 ××= I.nW  (17.3) 
 

which means that the regulated output responses zr, the control signal u (0.2 corresponds to a maximum of 5 Volts) and 
the measurement noise (0.1 is estimate of the sensor noise levels) are weighted in the entire frequency region. 
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4.2. Experimental Results 

 
To demonstrate the performance of the designed H2 optimal controller, shaking table test of the two-story building 

model with AMD introduced previously was conducted. An earthquake-type excitation was inputted to the shake-table 
system as the excitation source. The building test-bed on the shaking table was excited by the scaled El Centro 
earthquake signal shown in Fig. 6. 
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Figure 6. El Centro earthquake ground acceleration used for seismic excitation 
 
The controller is implemented using the Matlab Simulink interface and executed in realtime using the QuaRC 

software. A schematic diagram of the control system is presented in Fig. 1. Figure 7 illustrates the block diagram 
developed for the seismic response control system. A proportional-derivative (PD) controller is used for shake-table 
position control using the position reference shown in Fig. 8. 
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Figure 7. Simulink block diagram for a seismic response control system 
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Figure 8. Shake-Table position reference used by the PD controller. 
 

Figure 9 shows the acceleration of the first floor ( 1x&& ) and the second floor ( 2x&& ) of the bench-scale structure when 
excited by the scaled El Centro earthquake signal for the controlled and uncontrolled systems. From the results it can be 
observed that the structural responses are reduced greatly. The reduction ratios of the acceleration in the first floor and 
second floor are 88% and 69%, respectively. 
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(b) 

Figure 9. Open (dashed) and closed loop (solid) acceleration responses of floors 1 (a) and 2 (b) under seismic 
excitation 

 
The AMD input voltage (vm) and its associated position (xa) are illustrated in Fig. 10. As can be seen from Fig. 10 

(b), note that the AMD do not reach its stroke limit (± 65 mm), i.e., the actuator saturation. 
 



V I  C o n g r e s s o  N a c i o n a l  d e  E n g e n h a r i a  M e c â n i c a ,  1 8  a  2 1  d e  A g o s t o  2 0 10 ,  C a m p i n a  G r a n d e  -  P a r a í b a  

 

0 2 4 6 8 10 12 14 16 18 20
-4

-3

-2

-1

0

1

2

3

4

Time (sec)

A
M

D
 in

pu
t v

ol
ta

ge
 (

V
ol

ts
)

 
(a) 

0 2 4 6 8 10 12 14 16 18 20
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

Tempo (sec)

A
M

D
 p

os
iti

on
 -

 x
a 

(m
)

 
(b) 

Figure 10. AMD input voltage vm (a) and its associated position xa (b) 
 

 
5. CONCLUSIONS 

 
The optimal H2 control strategy was tested to attenuate the vibrations of a two-floor building model under seismic 

excitation. The goal of this approach is to design an output feedback H2 controller which minimizes the disturbance 
attenuation level considering the control input limit and the shape of the disturbance excitation. It is shown that when 
the optimal H2 control strategy is used in the bench-scale structure, the experimental results show that the structural 
responses are reduced significantly with the designed optimal controller. The inclusion of uncertainties in the controller 
design constitutes the next implementation for this research. 
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