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Abstract. This paper presents an analytical model to predict the stress stiffening effects on the natural frequencies of 
turbine blades. The model formulation is based on the continuum dynamics and it incorporates the Von Karman 
nonlinear strain-displacement relationships accounting for flexural vibration modes only. A weak form formulation 
combined with the Rayleigh-Ritz method is proposed to solve the resultant differential equations of motion. The model 
predictions are compared with numerical results obtained using the Finite Element method. The predictions indicate 
that the natural frequencies are significantly affected by the turbine operating angular velocity. 
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1. INTRODUCTION  
 
Turbines are being used for decades in power generation applications. They are classified according to the working 

fluid used in the power generation process, which can be wind, hydro, steam or gas. Great advances have been 
incorporated into the gas turbine in the last decades, perhaps beyond any other type of turbomachinery. Technological 
advances can be quoted as, for example, increased firing temperature, usage of advanced composite and alloyed 
materials, sophisticated cooling mechanism in components such as blade and nozzle, methods of reducing emissions, 
noise and thereby improving thermal efficiencies. Mainly due to these great technological advances gas turbines 
became the selected engine in various applications, including mechanical drive and power generation systems. 

Gas turbines have unquestionably evolved in sophistication, but the approach used for vibration monitoring 
remained virtually unchanged. What has changed in recent years was the possibility of additional measures, such as 
combustion instability monitoring, hazardous gas detection, flame detection, exhaust gas temperature diagnostic, 
performance monitoring and overspeed detection (Maalouf, 2005). 

The elastic behavior of structures may change considerably when they are in motion. For instance, when in rotation, 
the centrifugal force increases considerably the frequencies associated with flexural vibration modes of beams and 
blades, while the Coriolis coupling effects may result in different vibration mode shapes. Rotor blades are usually 
modeled as rotating beams in the open literature. This modeling approach allows getting some interesting characteristics 
related to the dynamic behavior of such structures.  

Several researchers have been publishing different vibration analysis procedures for gas turbines and their 
components. Some research results were published by: Zirkelback e Ginsberg (2001); Boyce (2002); Chiang, Hsu, Tu 
(2004); HU et al. (2004); Lee, Lin e Wu (2004); Irwanto et al. (2004); Kaneko et al. (2006); Sipatov et al. (2007); Kar e 
Vance (2007); Lee e Sheu (2007); Gunda e Ganguli (2008); Seo e Lee (2008); Jafri e Vance (2008 a e b); Hylton 
(2008); Hashemi, Farhadia e Carra, (2009); Creci Filho, Menezes e Barbosa (2009); Turhan e Bulut (2009). 

The aim of this study is to analyze the influence of the rotating shaft in the dynamic response of gas turbine rotor 
blades. Within this context, an analytical formulation of the problem using the Hamilton’s principle was developed. The 
Rayleigh-Ritz method was used to solve the partial differential equations of motion. The solution of the differential 
equation was validated against numerical results obtained using the Finite Element method. 
 
2. BLADE MODEL FORMULATION 

 
The simplified model for a single blade is shown in Figure (1) and it consists of a cantilever beam clamped on a 

rigid disk subjected to angular velocityΩ . 
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Figure 1. Simplified dynamic model of a gas turbine rotor 
 
The differential equations of motion together with the natural and geometric boundary conditions are obtained from 

the Hamilton’s Principle (Meirovitch, 1978) given by, 
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where: T and U  are the kinetic and strain energy, respectively and ncW  is the work done by the non-conservative 
forces. Considering only in-plane deflections the expressions for T , U  and ncW  can be written as follows, 
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where: ρ  is the material density, ( , )w x t  is the blade deflection, ca  is the centrifugal acceleration. ε , σ , Lm  and u  
are the strain, stress, mass per unit of length and axial displacement, respectively. The kinematics relationships are 
given by, 
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The strain-displacement is defined in terms of the Von Karman nonlinear relationship given as follows, 
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Substituting, Eq. (5) into Eq. (6) and Eq. (6) into Eq. (3) and integrating in y and z directions we obtain, 
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where ( )/xN EA u x= ∂ ∂ . Substituting the equations listed above into the Hamilton’s principle and taking the first 
variation on each term individually we obtain, 

 

R L

x, u dx

 

ROTOR 

BLADE 

z, w

Ω



V I  Co n gr es s o  N a c i o na l  de  E n g e n h ar i a  M ec â n i ca ,  18  a  21  de  A g o st o  20 1 0 ,  Ca m pi na  G r a n de  -  P ar a í b a  

 
21

2
R L R L

L LR R

w w wT m dx m dx
t t t

δδ δ
+ +∂ ∂ ∂⎛ ⎞= =⎜ ⎟∂ ∂ ∂⎝ ⎠∫ ∫         (8) 

 
2 22 2

2

2 2

2 2

1 1 1
2 2 2

R L R L R L

xR R R

R L R L R L

xR R R

u w wU EA dx EI dx N dx
x x x

u u w w w wEA dx EI dx N dx
x x x x x x

δ δ δ δ

δ δ δ

+ + +

+ + +

⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎛ ⎞= + + =⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞⎛ ⎞ + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

∫ ∫ ∫

∫ ∫ ∫

    (9) 

 
2R L

nc LR
W m xdx uδ δ

+
= Ω∫           (10)  

 
which leads to the following expression for the Hamilton’s principle, 
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Integrating by parts Eq. (11) we obtain, 
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which leads to the following differential equation for transverse displacement, 
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with natural and essential boundary conditions, 
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For axial displacement the differential equation is given by, 
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with the following natural and essential boundary conditions, 
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In order to solve this set of differential equations we need first to solve Eq. (15) in terms of ( )/xN EA u x= ∂ ∂ . 

After having xN  we then solve Eq. (13). The solution of Eq. (15) which satisfies the boundary conditions given by Eq. 
(16) is written as follows, 
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3. RAYLEIGH-RITZ METHOD 

 
The solution of Eq. (13) subjected to boundary conditions given in Eq. (14) is not trivial and it requires the 

application of numerical methods. For this purpose we have used the Rayleigh-Ritz method. The application of this 
method requires the weak form of Eq. (13) combined with a trial function which satisfies the essential or geometric 
boundary conditions given by Eq. (14). The first step consists of eliminating the time dependence of ( , )w x t  in Eq. (13) 
by transforming the partial differential equation into a total differential equation dependent on space variable only. In 
order to do that lets assume a solution written in terms of variable separation given as follows, 
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where: ( )xφ is the space function and ( ) cos( )t tη ω=  is the synchronous time dependent function. Substituting the 
general solution shown above into Eq. (13) leads to the following total differential equation, 
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The weak form is obtained by multiplying Eq. (19) by a weight function W  and integrating it twice in the x-

domain, 
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which results in the following weak form, 
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or in the matrix form, 
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Minimizing Eq (23) in respect to the coefficients vector { }c  we obtain the solution of Eq. (13) in the form of an 

eigenvalue problem given as follows, 
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The idea now is to find a trial function [ ]{ }
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boundary conditions and fulfils the C1 continuity requirement imposed by the weak form given by Eq. (21). A candidate 
function proposed in this work which satisfies these conditions is given in the following form, 
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where '( ) ( ) 0i iR Rφ φ= = . 
 
4. MODEL VALIDATION 

 
In order to validate the model two distinct analyses were carried out: (i) Free vibration analysis for a stationary 

cantilever beam ( 0Ω =  rpm), (ii) Free vibration analysis for a rotating beam ( 9550Ω =  rpm). The beam was assumed 
to be made of conventional steel with a length of 0.840 m, 0.140 m wide and 0.02 m thick. The beam was assumed to be 
clamped on a rigid wall (R = 0) for both cases. Figure (2) shows the convergence rate for the four first natural 
frequencies associated with the flexural vibration modes with increasing number of terms in the solution of Eq. (22). 
The results indicate that the convergence for the k-th frequency, (k = 1…∞ ), is reached using 2k terms in the Ritz 
solution. Comparisons between the natural frequencies predicted using the proposed semi-analytical model and results 
obtained from finite element analyses (ABAQUS®, 2005) for both cases are shown in Tables 1 and 2. Figures (3) and 
(4) show the vibration modes obtained from FE analyses and using the proposed model, respectively. The results 
obtained using the proposed model correlate very well with results obtained from FE analyses.     

 
 

Figure 2. Convergence rate for natural frequencies 
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Table 1. Comparison between model predictions and FE analyses for 0 rpmΩ = . 
 

Frequency (Hz) Flexural 
modes FE model Proposed model 

Error (%) 

1 23.30 23.11 0.82 
2 145.64 144.83 0.55 
3 406.82 405.55 0.31 
4 794.82 796.13 0.16 

 
 
 
 
 

 
 
 

 
 

Figure 3. Vibration modes obtained from FE analyses ( 0Ω =  rpm), (ABAQUS®, 2005) 
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Figure 4. Vibration modes predicted using the proposed model ( 0Ω =  rpm)  
 
 

 
Table 2. Comparison between model predictions and FE analyses for 9550 rpmΩ = . 

 
Frequency (Hz) Flexural 

modes FE model Proposed model 
Error (%) 

1 166.42 167.31 0.53 
2 426.24 431.80 1.29 
3 772.22 794.39 2.79 

 
The stress stiffening effects on the natural frequencies of the rotating beam are shown in Figure (5). For this case 

the rotor angular velocity was varied from 0 to 30,000 rpm. The results clearly indicate that the natural frequencies of 
the rotating beam are significantly affected by the rotor angular speed. It is also worth noticing that these effects are 
much more pronounced for the lowest frequency of the structure. 
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Figure 5. Influence of the rotation on the natural frequencies 
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5. VIBRATION ANALYSIS OF GAS TURBINE BLADES 
 

This section presents the effects of the angular velocity on the natural frequencies of a typical gas turbine blade. 
The blade was assumed to be made of steel with length L = 0.05 m, width B = 0.02 m and thickness h = 0.003 m 
clamped on a rigid rotor disk of radius R = 0.2 m. Figure 6 shows the effects of the angular velocity on the first four 
natural frequencies. To better illustrate the stress stiffening effects, the natural frequencies of the blade were normalized 
in respect to the frequencies obtained for the case where 0 rpmΩ = . Figure (6) clearly indicates that the lowest 
frequency associated with the first flexural vibration mode is the most affected frequency within the gas turbine 
operation angular velocity range studied in this work. Figure (7) shows the normal stress distribution with increasing 
angular velocities obtained from Eq. (17). 
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Figure 6. Influence of the rotation on the natural frequencies of a typical gas turbine blade 
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Figure 7. Stress distribution along the blade 

 
6. CONCLUSIONS 
 

This paper presented a detailed analytical formulation for rotating beams subjected to stress stiffening effects. The 
analytical model was validated against numerical results obtained from FE analyses. A very good agreement between 
results obtained from FE analyses and predictions obtained using the proposed model was obtained. 

An application of the model for natural frequencies prediction of gas turbine blades was also presented and 
discussed. The predictions obtained using the proposed models clearly indicate that the natural frequencies of gas 
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turbine blades are significantly affected by the rotor angular velocity. It was also demonstrated that the stress stiffening 
effects are much more pronounced for the lowest natural frequency of the structure. 

It is worth mentioning that due to aerodynamic restrictions, the geometry of gas turbine blades is far more complex 
than the simplified beam geometry adopted in this paper. However, the simplified model proposed here gives some 
insight into the dynamic behavior of gas turbine structures. It is also a preliminary step towards the development of 
more elaborated models. 
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