
 

VI CONGRESSO NACIONAL DE ENGENHARIA MECÂNICA 
VI NATIONAL CONGRESS OF MECHANICAL ENGINEERING 

18 a 21 de agosto de 2010 – Campina Grande – Paraíba - Brasil 
August 18 – 21, 2010 – Campina Grande – Paraíba – Brazil 

 

COMPARISON BETWEEN THE CEBECI AND SMITH AND THE 
BALDWIN AND LOMAX TURBULENCE MODELS – FINAL RESULTS 

 
Edisson Sávio de Góes Maciel, edissonsavio@yahoo.com.br1 
 
1 Mechanical Engineer/Researcher – Rua Demócrito Cavalcanti, 152 – Afogados – Recife – PE – Brazil – 50750-080 
 
Abstract. The present work is the final part of the study that aims a comparison between the turbulence models of 
Cebeci and Smith and of Baldwin and Lomax applied to aeronautical and aerospace problems. The Jameson and 
Mavriplis algorithm is used to perform the numerical experiments. The algorithm is symmetrical, second order 
accurate in space and time, and the temporal integration is accomplished by a Runge-Kutta type method. The Reynolds 
average Navier-Stokes equations are solved, using a finite volume formulation and a structured spatial discretization, 
and the models of Cebeci and Smith and of Baldwin and Lomax are used to describe the turbulence effects in the flow 
properties. The physical problems of the transonic flow along a convergent-divergent nozzle and the “cold gas” 
hypersonic flow around a double ellipse configuration are studied. A spatially variable time step is employed to 
accelerate the convergence of the numerical scheme. Effective gains in terms of convergence ratio are observed with 
this technique, as reported in Maciel. The numerical results are compared with experimental or theoretical solutions. 
These results have demonstrated that the Baldwin and Lomax model is more severe in the nozzle problem, while the 
Cebeci and Smith model is more severe in the double ellipse problem and more accurate in both examples. 

 
Keymords: Algebraic turbulence model of Cebeci and Smith, Algebraic turbulence model of Baldwin and Lomax, 
Jameson and Mavriplis algorithm, Navier-Stokes equations, Nozzle and double ellipse problems. 

 
 

1. INTRODUCTION 
 

The development of aeronautical and aerospace projects require hours of wind tunnel essays. It is necessary to 
minimize such wind tunnel procedures due to the growing cost of electrical energy. In Brazil, there is the problem of 
this country has not yet wind tunnels of great capacity, able to generate supersonic flows or even high subsonic flows. 
So, Computational Fluid Dynamics, CFD, techniques have now great highlight in the aeronautical industry scenario. 
Analogous to wind tunnel essays, the numerical methods determine physical properties in discrete points of the spatial 
domain. Hence, the aerodynamic coefficients of lift, drag and momentum can be calculated. A numerical scheme which 
fulfills well this role of giving data to the project phase is the Jameson and Mavriplis (1986) scheme. 

Jameson and Mavriplis (1986) emphasized the substantial cost reduction in the calculations of the Euler equation 
solutions. The method proposed by Jameson, Schmidt and Turkel (1981) had proved robustness, good accuracy and 
sufficient sophistication to more complete applications. The objective was apply such scheme to geometries like wing-
fuselage, involving engines, missiles and other typical components, to represent a whole airplane. The work emphasized 
the use of triangular cells which allow a bigger flexibility in the description of complex geometries and become the 
mesh generation process less expensive. The fluid movement equations were spatially discretized on an unstructured 
context. The scheme used a finite volume formulation with properties determined at the cell centroids. Artificial 
dissipation operators were constructed to guarantee second order spatial accuracy to the scheme, except in the 
proximities of shock waves in which the accuracy was reduced to the first order (Jameson, Schmidt and Turkel, 1981). 
The time integration used a Runge-Kutta method of five stages. 
 There is a practical necessity in the aeronautical industry and in other fields of the capability of calculating 
separated turbulent compressible flows. With the available numerical methods, researches seem able to analyze several 
separated flows, three-dimensional in general, if an appropriated turbulence model is employed. Simple methods as the 
algebraic turbulence models of Cebeci and Smith (1970) and of Baldwin and Lomax (1978) supply satisfactory results 
with low computational cost and allow that the main features of the turbulent flow be detected. 

Maciel (2006a), the first part of this study, performed a comparison between the Cebeci and Smith (1970) and the 
Baldwin and Lomax (1978) models in relation to solution quality and numerical accuracy. The numerical algorithms of 
MacCormack (1969) and of Jameson and Mavriplis (1986) were implemented, on a finite volume and structured spatial 
discretization contexts, to perform the numerical experiments. The Reynolds average Navier-Stokes equations were 
solved. The steady state supersonic flow along a ramp was studied. The results have demonstrated that the Cebeci and 
Smith (1970) model yielded better quality characteristics and more critical solutions than the Baldwin and Lomax 
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(1978) model as the MacCormack (1969) scheme was studied. When the Jameson and Mavriplis (1986) scheme was 
studied, no meaningful differences were perceptible. 

In the present work, the continuation of Maciel (2006a), the turbulence models of Cebeci and Smith (1970) and of 
Baldwin and Lomax (1978) are studied in relation to solution quality and numerical accuracy. The Jameson and 
Mavriplis (1986) algorithm is implemented, using a finite volume formulation and a structured spatial discretization, to 
perform the numerical experiments. The Reynolds average Navier-Stokes equations are solved applied to the physical 
problems of the transonic flow along a convergent-divergent nozzle and the “cold gas” hypersonic flow around a double 
ellipse configuration. A spatially variable time step is implemented to accelerate the convergence process of the 
Jameson and Mavriplis (1986) algorithm. Effective gains in terms of convergence ratio are observed with this 
technique, as reported in Maciel (2005, 2008). The numerical results are compared with experimental or theoretical 
solutions. The results have demonstrated that the Baldwin and Lomax (1978) model was more severe in the nozzle 
problem, while the Cebeci and Smith (1970) model was more severe in the double ellipse problem and more accurate in 
both examples. 
 
2. NAVIER-STOKES EQUATIONS 

 

The equation 0  SV
dSnFQdVt


 defines the Navier-Stokes equations in integral and conservative forms. 

In this equation, Q is the vector of conserved variables written to a Cartesian system, V is the cell volume, n


 is the 

normal unity vector to each flux face, S is the flux area and F


 represents the sum of the convective and diffusive flux 
vectors. Definitions to F and Q vectors, as well to viscous stresses and the components of the Fourier heat flux are 
found in Maciel (2006a). 
 To the nozzle physical problem, the Navier-Stokes equations are nondimensionalized in relation to the stagnation 
properties. To the double ellipse physical problem, the Navier-Stokes equations are nondimensionalized in relation to 
the freestream properties. 

The Reynolds number is defined by MREFREF lV Re , being  the fluid density, VREF a characteristic flow 

velocity, lREF a geometry characteristic length and M the fluid molecular viscosity. The matrix system of the Navier-

Stokes equations is closed with the state equation of a perfect gas  )(5.0)1( 22 vuep  , assuming the ideal gas 

hypothesis. In this last equation,  is the ratio of specific heats, e is the total energy and u and v are the Cartesian flow 
velocity components. 
 
3. FINITE VOLUMES 
 
 Using finite volumes and considering the vector of conserved variables constant in a stationary volume Vi,j: 
 

    .,,,, 0dSnFtQV
S jijijiji  


                                                                                                                         (1) 

 
The cell volume and the area components at interface are defined in Maciel (2002) and in Maciel (2006b). Each cell is 
defined by the nodes (i,j), (i+1,j), (i+1,j+1) and (i,j+1). The spatial discretization gives: 
 

           0SFSFSFSFdtQVd j21i21jij21i21jijiji   ,//,,//,,,


.                                                   (2) 

 
 The gradients of the primitive variables are calculated using the Green theorem which considers that the gradient of 
a primitive variable is constant in the volume and that the volume integral which defines the gradient is replaced by a 
surface integral (Long, Khan and Sharp, 1991, Maciel, 2002, Maciel, 2006a, and Maciel, 2006b). 
 
4. JAMESON AND MAVRIPLIS (1986) ALGORITHM 
 
 Equation (2) can be rewritten on a structured spatial discretization context (Jameson, Schmidt and Turkel, 1981, 
Jameson and Mavriplis, 1986, and Maciel, 2002) as: 
 

  0)Q(CdtQVd j,ij,ij,i  ,                                                                                                                                     (3) 

 
where: 
 
    

  jijijiji yjixjiyjixjiji SQFSQESQFSQEQC
,/,//,/,

)()()()()( ,/,//,/,, 21212121 21212121   

   
jijijiji yjixjiyjixji SQFSQESQFSQE

,/,//,/,
)()()()( ,/,//,/, 21212121 21212121                     (4)                

 



V I  Co n gr es s o  N a c i o na l  de  E n g e n h ar i a  M ec â n i ca ,  18  a  21  de  A g o st o  20 1 0 ,  Ca m pi na  G r a n de  -  P ar a í b a  

 
is the discrete approximation of the flux integral of Eq. (2). E and F are the Cartesian flux components, involving 
convective and diffusive contributions and Sx and Sy are the Cartesian area components. In this work, it was adopted, for 
example, that the value of the conserved variables at interface (i,j-1/2) is obtained by arithmetical average between the 
values of the conserved variables at the (i,j) volume and of the conserved variables at the (i,j-1) volume. 

The spatial discretization proposed by the authors is equivalent to a symmetrical scheme with second order 
accuracy, on a finite difference context. The introduction of a “D” dissipation operator is necessary to guarantee 
numerical stability in presence of, for example, uncoupled solutions and non-linear instabilities, like shock waves. So, 
Equation (3) is rewritten as: 

 
    0)()( ,,,,  jijijiji QDQCdtQVd .                                                                                          (5) 

 
The time integration is performed by a Runge-Kutta explicit method of five stages, second order accurate, and is 
described in Maciel (2002), in Maciel (2006a) and in Maciel (2006b). The artificial dissipation operator implemented 
with the Jameson and Mavriplis (1986) scheme is the same as that used in Maciel (2006a) and details are found in 
Maciel (2002) and in Maciel (2006b). 
 
5. TURBULENCE MODEL OF CEBECI AND SMITH (1970) 
 

The problem of the turbulent simulation is in the calculation of the Reynolds stress. Expressions involving velocity 
fluctuations, originating from the average process, represent six new unknowns. However, the number of equations 
keeps the same and the system is not closed. The modeling function is to develop approximations to these correlations. 
To the calculation of the turbulent viscosity according to the Cebeci and Smith (1970) model, the boundary layer is 
divided in internal and external. 

Initially, the (w) wall fluid cinematic viscosity and the (xy,w) wall shear stress are calculated. After that, the () 
boundary layer thickness, the (LM) linear momentum thickness and the (VtBL) boundary layer tangential velocity are 
calculated. So, the (N) normal distance from the wall to the studied cell is calculated. The N+ term is obtained from 

wwwxy NN 
,Re , where w is the wall fluid density. The van Driest damping factor is calculated by: 

 

 )AN( wwe1D
  ,                                                                                                                                       (6) 

 

with  and 26A 
w  is the wall fluid molecular viscosity. After that, the ( dNdVt ) normal to the wall gradient of the 

tangential velocity is calculated and the internal turbulent viscosity is given by: 
 

 dNdVtNDTi
2)(Re  ,                                                                                                                                        (7) 

 
where  is the von Kárman constant, which has the value 0.4. The intermittent function of Klebanoff is calculated to the 

external viscosity by   16
Kleb N5.51)N(g


  . With it, the external turbulent viscosity is calculated by: 

 
 KlebLMBLTe gVt  ).Re( 01680 .                                                                                                                             (8) 

 
Finally, the turbulent viscosity is chosen from the internal and the external viscosities: ),(MIN TeTiT  . 

 
6. TURBULENCE MODEL OF BALDWIN AND LOMAX (1978) 
 

To the calculation of the turbulent viscosity according to the Baldwin and Lomax (1978) model, the boundary layer 
is again divided in internal and external. In the internal layer, 

 

 2
mixTi l    and   





 

 01 AN
mix eNl .                                                                                                         (9) 

 
In the external layer, 
 

 , with )/;( max KlebKlebwakecpTe CNNFFC  max
2

maxmaxmax /; FUNCFNMINF difwkwake  and  



  mix

N
lMAXF 1max  .  (10) 

 
Hence,  is the value of N where maxN mixl  reached its maximum value and lmix is the Prandtl mixture length. The 

constant values are: , 4.0 0168.0 , , 26A0  6.1Ccp  , 3.0CKleb   and 1Cwk  .  is the intermittent KlebF
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function of Klebanoff given by    16
max5.51)(


 NNCNF KlebKleb ,   is the vorticity vector magnitude and  

is the velocity maximum value in the boundary layer case. To free shear layers, 
difU

 

 
max

22

max

22

NN
dif vuvuU







 





  .                                                                                                          (11) 

 
7. SPATIALLY VARIABLE TIME STEP 

 
The basic idea of this procedure consists in keeping constant the CFL number in all calculation domain, allowing, 

hence, the use of appropriated time steps to each specific mesh region during the convergence process. Hence, 
according to the definition of the CFL number, it is possible to write: 
 
   jijiji csCFLt ,,,  ,                                                                                                                                           (12) 

 
where CFL is the “Courant-Friedrichs-Lewy” number to provide numerical stability to the scheme; 

 is the maximum characteristic speed of propagation of information in the calculation 

domain; a is the speed of sound, defined as 

  jiji avuc ,
5.022

, 



 

 pa ; and   jis ,  is a characteristic length of transport of 

information. On a finite volume context,  is chosen as the minor value found between the minor centroid 

distance, involving the (i,j) cell and a neighbor, and the minor cell side length. 

  jis ,

 
8. INITIAL AND BOUNDARY CONDITIONS 
 
8.1. Initial Conditions 
 
 Stagnation values are used as initial condition to the nozzle problem. Only at the exit boundary is imposed a 
reduction of 1/3 to the density and to the pressure to start the flow along the nozzle (Maciel, 2002). The vector of 
conserved variables is defined as: 
 
a) Domain except the nozzle exit (through the nondimensionalization employed in this work) 
 

     TQ )1(21001  



;                                                                                                                           (13) 

 
b) Nozzle exit: 
 

    TQ )1(61003/1   .                                                                                                                       (14) 

 
To the double ellipse problem, values of freestream flow are adopted for all properties as initial condition, in the whole 
calculation domain (Jameson and Mavriplis, 1986, and Maciel, 2002): 
 

   T
MsenMMQ 25.0)1(1cos1    ,                                                                                         (15) 

 
where  is the flow attack angle and M is the freestream Mach number. 
 
8.2. Boundary Conditions 
 
 The different types of boundary conditions implemented in this work are described in Maciel (2002) and in Maciel 
(2006a,b). 
 
9. RESULTS 
 
 Tests were performed in a CELERON-1.2 GHz and 128 Mbytes of RAM memory microcomputer. Converged 
results occurred to 3 orders of reduction in the value of the maximum residual. The value used to  was 1.4. The attack 
angle was adopted equals to 0.0. The values of the Prandtl numbers are: 0.72 to the molecular and 0.9 to the turbulent. 
 
9.1. Convergent-Divergent Nozzle Problem – Laminar Solution 
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An algebraic mesh of 61x71 points, with an exponential stretching of 10% in both  and  directions, was used. It is 

equivalent to be composed of 4,200 rectangular volumes and 4,331 nodes. The Reynolds number was estimated in 
652,210.2, to an altitude of 0.0m and a characteristic length of l = 0.028m, based on Fox and McDonald (1988) data. 

Figures 1 and 2 exhibit the density and the pressure fields to the laminar flow generated by the Jameson and 
Mavriplis (1986) scheme. Pressure oscillations in the pressure field do not occur. 

  
                     Figure 1. Density field (L).                                         Figure 2. Pressure field (L). 
 
Figures 3 and 4 exhibit the Mach number contours and the pressure distribution along the nozzle lower wall, 

respectively. Figure 3 does not present pre-shock oscillations near the throat. The pressure distribution along the nozzle 
lower wall, Fig. 4, exhibits the shock at the throat. This shock has a pressure ratio value equals to 0.5. 

  
        Figure 3. Mach number field (L).                 Figure 4. Wall pressure distribution (L). 

 
9.2. Convergent-Divergent Nozzle Problem – Turbulent Solutions 
 
 Figures 5 and 6 exhibit the density field of the turbulent flow obtained with the Cebeci and Smith (1970) and with 
the Baldwin and Lomax (1978) models, respectively. The density peaks generated by the turbulent solutions are the 
same than the respective peak generated by the laminar solution. The field generated by the Baldwin and Lomax (1978) 
model is denser than the field obtained by the Cebeci and Smith (1970) model. 
 Figures 7 and 8 exhibit the pressure contours to the turbulent flow. The pressure filed generated by the Baldwin and 
Lomax (1978) model is lightly more severe than the respective field generated by the Cebeci and Smith (1970) model. 
 Figures 9 and 10 exhibit the Mach number contours generated by both models. The field generated by the Cebeci 
and Smith (1970) model is more intense than that generated by the Baldwin and Lomax (1978) model. 
 Figure 11 exhibits the pressure distributions along the nozzle lower wall generated by the laminar and the 
turbulence models of Cebeci and Smith (1970) and of Baldwin and Lomax (1978). All solutions are compared with the 
experimental results of Mason, Putnam and Re (1980). As can be seen, the shock detected by the Baldwin and Lomax 
(1978) model is more severe than that detected by the Cebeci and Smith (1970) model. The pressure ratio at the shock 
calculated by the Baldwin and Lomax (1978) model has a value of 0.5, according to the laminar solution, while the 
same pressure ratio calculated by the Cebeci and Smith (1970) model has a value of 0.48. However, the Cebeci and 
Smith (1970) solution is the closest with the experimental results. Hence, the Baldwin and Lomax (1978) model 
presents more severe and critical solutions than the Cebeci and Smith (1970) model, to this physical problem, although 
the Cebeci and Smith (1970) is more accurate in terms of pressure distribution, closer to the experimental results. 
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                Figure 5. Density field (CS).                  Figure 6. Density field (BL). 

  
                         Figure 7. Pressure field (CS).                                       Figure 8. Pressure field (BL). 

  
                     Figure 9. Mach number field (CS).       Figure 10. Mach number field (BL). 

 
Figure 11. Lower wall pressure distributions. 
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9.3. Double Ellipse Problem – Laminar Solution 

 
An algebraic mesh of 125x70 points, with an exponential stretching of 10% in the  direction, was used. It is 

equivalent to be composed of 8,556 rectangular volumes and 8,750 nodes. A freestream Mach number of 10.0 was 
adopted as initial condition. The Reynolds number was estimated in 3,959,821.0, to an altitude of 40,000m and a 
characteristic length of l = 5.0m, based on Fox and McDonald (1988) data. 
 Figures 12 and 13 exhibit the density and the pressure fields to the laminar flow generated by the Jameson and 
Mavriplis (1986) scheme. The pressure field does not present pressure oscillations. Figures 14 and 15 exhibit the Mach 
number contours and the -Cp distribution around the double ellipse, respectively. Figure 14 does not present pre-shock 
oscillations. The -Cp distribution around the double ellipse, Fig. 15, exhibits the two shocks, at the configuration nose 
and at the second ellipse. The Cp value of the first shock is equal to 1.76, while the second shock has a value of 0.92. 

  
                           Figure 12. Density field (L).                                         Figure 13. Pressure field (L). 

  
        Figure 14. Mach number field (L).                           Figure 15. -Cp distribution (L). 

 
 The lift and drag aerodynamic coefficients calculated to the laminar case are: cL = -1,213x10-1 and cD = -2,541x10-3. 
Only pressure effects are considered in the determination of these coefficients. In this problem, the aerodynamic 
coefficients should have values different from zero and the cL coefficient should have a negative value because the 
second shock originates a normal resultant pointing downwards over the double ellipse. 
 
9.4. Double Ellipse Problem – Turbulent Solutions 
 
 Figures 16 and 17 exhibit the density field of the turbulent flow obtained with the Cebeci and Smith (1970) and 
with the Baldwin and Lomax (1978) models, respectively. The density peaks generated by the turbulent solutions are 
less intense than the respective peak generated by the laminar solution. The field obtained by the Baldwin and Lomax 
(1978) model is denser than the field generated by the Cebeci and Smith (1970) model. 
 Figures 18 and 19 exhibit the pressure contours to the turbulent flow. The pressure field obtained by the Cebeci and 
Smith (1970) model is more severe than that generated by the Baldwin and Lomax (1978) model. 

Figures 20 and 21 exhibit the Mach number contours generated by the models. The field generated by  the  Baldwin 
and Lomax (1978) scheme is more intense than that generated by the Cebeci and Smith (1970) model. 
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               Figure 16. Density field (CS).                  Figure 17. Density field (BL). 

  
                         Figure 18. Pressure field (CS).                              Figure 19. Pressure field (BL). 

  
             Figure 20. Mach number field (CS).       Figure 21. Mach number field (BL). 
 

 Figure 22 exhibits the -Cp distributions around the double ellipse generated by the laminar and the turbulence 
models of Cebeci and Smith (1970) and of Baldwin and Lomax (1978). Both turbulence models detect the two shocks, 
at the configuration nose and the second ellipse. The first shock has a Cp value of 1.82 by the Cebeci and Smith (1970) 
model and of 1.78 by the Baldwin and Lomax (1978) model. The second shock presents the following Cp values: Cp = 
0.94 by the Cebeci and Smith (1970) model and Cp = 0.92 by the Baldwin and Lomax (1978) model. So, the Cebeci 
and Smith (1970) model presents Cp values at the two shocks more severe than the Baldwin and Lomax (1978) model. 
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Figure 22. -Cp distributions. 

 
 Table 1 shows the lift and drag aerodynamic coefficients calculated to the turbulent case. Only pressure effects are 
considered in the determination of these coefficients. As can be seen, the Baldwin and Lomax (1978) model presents 
more severe and bigger values (in modulus) of cL and cD than the Cebeci and Smith (1970) model, although these values 
are smaller than the respective values of the laminar solution. 
 

Table 1. Aerodynamic coefficients – Turbulent case. 
 

Model cL cD 
Cebeci and Smith (1970) -1,117x10-1 1,456x10-3 

Baldwin and Lomax (1978) -1,180x10-1 -2,270x10-3 
 
Another possibility to quantitative comparison of both schemes is the determination of the stagnation pressure 

ahead of the configuration. Anderson Jr. (1984) presents a table of normal shock wave properties in its B Appendix. 
This table permits the determination of some shock wave properties as function of the freestream Mach number. In front 
of the double ellipse configuration studied in this work, the shock wave presents a normal shock behavior, which 
permits the determination of the stagnation pressure, behind the shock wave, from the tables encountered in Anderson 
Jr. (1984). So it is possible to determine the ratio prpr0  from Anderson Jr. (1984), where pr0 is the stagnation 

pressure in front of the configuration and pr is the freestream pressure (equals to 1/ to the present 
nondimensionalization). 

Hence, to this problem, M = 10.0 corresponds to prpr0 = 129.2 and remembering that pr  = 0.714, it is 

possible to conclude that pr0 = 92.25. Table 2 presents values of the stagnation pressure and of the percentage errors 
obtained by each turbulence model. As can be seen, the Cebeci and Smith (1970) model is more accurate than the 
Baldwin and Lomax (1978) model to this problem. 
 

Table 2. Values of stagnation pressure and percentage errors to each turbulence model. 
 

Model pr0 Error (%) 
Cebeci and Smith (1970) 85.86 6.9 

Baldwin and Lomax (1978) 84.21 8.7 
 
9.5. Computational Data of the Simulations 
 

Table 3. Numerical data of the nozzle and double ellipse simulations. 
 

Nozzle Double ellipse 
Model CFL Iterations CFL Iterations Cost* 

Laminar 2.5 838 0.4 2,461 0.0000334 
Cebeci and Smith (1970) 0.1 29,228 0.4 1,996 0.0001507 

Baldwin and Lomax (1978) 2.6 821 0.4 2,029 0.0000858 
      * Given in second/per volume/per iteration 
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 Table 3 shows the numerical data of the laminar and turbulent simulations. The Jameson and Mavriplis (1986) cost 
had an increase of 351% with the implementation of the Cebeci and Smith (1970) model in relation to the laminar 
solution, while with the Baldwin and Lomax (1978) model this increase was of 157%. 
 
10. CONCLUSIONS 
 
 In the present work, the continuation of Maciel (2006a), the turbulence models of Cebeci and Smith (1970) and of 
Baldwin and Lomax (1978) were studied in the solution of the turbulent transonic flow along a convergent-divergent 
nozzle and of the turbulent “cold gas” hypersonic flow around a double ellipse configuration. The Jameson and 
Mavriplis (1986) algorithm, using a finite volume formulation and a structured spatial discretization, was employed to 
numerical experiments. The Reynolds average Navier-Stokes equations were solved and the Cebeci and Smith (1970) 
and the Baldwin and Lomax (1978) models were used to simulate the effects of the turbulent flow. A spatially variable 
time step was implemented aiming to accelerate the convergence process. The effective gains in terms of convergence 
ratio are reported in Maciel (2005, 2008). 
 The results have demonstrated that the Baldwin and Lomax (1978) model was more severe in the nozzle problem, 
while the Cebeci and Smith (1970) model was more severe in the double ellipse problem and more accurate in both 
examples. In the nozzle problem, the Baldwin and Lomax (1978) model predicts a pressure field more severe than the 
Cebeci and Smith (1970) model. However, the wall pressure distribution and the pressure ratio at the shock are better 
described and estimated by the Cebeci and Smith (1970) model. In the double ellipse problem, the pressure field is more 
severe in the solution obtained by the Cebeci and Smith (1970) model. The density and the Mach number fields are 
denser and more intense, respectively, in the solution obtained by the Baldwin and Lomax (1978) model. However, the 
Cp values of the two shocks, at the configuration nose and at the second ellipse, are more severe in the solution obtained 
by the Cebeci and Smith (1970) model. Moreover, a more accurate solution is obtained by the Cebeci and Smith (1970) 
model in the determination of the stagnation pressure in front of the configuration nose, although more severe values of 
cL and cD are calculated by the Baldwin and Lomax (1978) model. The computational cost of the Jameson and 
Mavriplis (1986) scheme using the turbulence model of Cebeci and Smith (1970) is 351% more expensive than the 
laminar solution, while the Baldwin and Lomax (1978) model is only 157% more expensive. 
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