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Abstract. Complex aeroelastic phenomena, such as Limit cycle oscillations, chaos and bifurcations have been observed
in wind tunnels tests and real aircrafts. Such phenomenas are related with nonlinear aerodynamic or structural condi-
tions that can be faced by aeroelastic systems. In all these cases, the complex responses of the system are of extreme
importance for aircraft safety and performance. In this work, the effects of aerodynamic stall and structural hardening
pitch nonlinearities in a two degrees of freedom airfoil are investigated trough numerical integration. The resulting time
series are analyzed using time series analysis and Higher Order Spectral analysis in order to characterize the nonlinear
couplings between the harmonics generated by the structural stiffness, stall effects and the asymmetry introduced by an
offset angle of attack.
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1. INTRODUCTION

Characterization of nonlinearities in aircraft is critical to the solution of aeroelastic problems where an optimal relation
between performance and safety is desirable. Aeroelastic systems are inherently nonlinear. Nonlinearities can be admitted
in the project, or may arise at any time during the life of the aircraft, significantly affecting the predicted response by
conventional methods of linear analysis and reducing the limits for catastrophic instabilities (Vasconcellos et al., 2012;
Conner et al., 1996; Fung, 1993; Lee et al., 1997; Li et al., 2010). Therefore, it is important to characterize, identify
and include such non-linear effects to the design and development of aircraft. Common aeroelastic nonlinear phenomena,
such as Limit cycle oscillations, chaos and bifurcations have been observed in wind tunnels tests and real aircrafts. Such
phenomenas are related with nonlinear aerodynamic or structural conditions that can be faced by aeroelastic systems.
Aerodynamic nonlinearities can occur for instance, in transonic flight and high angles of attack attitudes (Ericsson and
Reding, 1987; Lee et al., 1999; Dowell and Tang, 2002). In terms of structural properties, the effects of aging, loose
attachments, material features, large motions or deformations are examples of non-linearities to be considered. In all these
cases, the complex responses of the system are of extreme importance for aircraft safety and performance. Sometimes
a nonlinearity has the effect of initiating instability, but it also possible for a nonlinear effect to limit the response in
an otherwise dangerous situation. In addition, recently, stable aeroelastic nonlinear oscillations becomes desired for
aeroelastic energy harvesting purposes. In this work, the combined effects of concentrated structural nonlinearities and
stall effects in a two degrees of freedom airfoil are investigated for structural hardening pitch, under influence of relatively
large angle of attack oscillations, leading to stall conditions. All the analysis are based in numerical integration of a typical
section model, with modified Theodorsen unsteady aerodynamics to incorporate stall effect, similar as did in the work
of Gilliatt et al. (1998) for quasi-steady approach of Theodorsen function. The resulting time series and phase portraits
will be analyzed and Higher Order Spectral analysis will be performed in order to characterize the nonlinear couplings
between the harmonics generated by the nonlinear terms.

Higher-order spectral analysis can be used to detect and identify nonlinear coupling between frequency modes in a
time series. Higher-order spectral moments are multidimensional Fourier transforms of higher-order statistics. The basis
for the use of HOS in the detection of nonlinear coupling among frequency modes is that if two frequency components
(f1 and f2) and their sum components (f1 and f2) are coupled in a time series through a quadratically nonlinear interaction
mechanism, phase coherence will exist among them. Under these conditions, the averaging will lead to a large value of
the autobispectrum. Similarly, the cubic interaction of three frequency components (f1, f2, and f3) yields a large value for
the autotrispectrum (Hajj and Beran, 2008).

2. Nonlinear Aeroelastic Model

The aeroelastic system consists of a two-dimensional airfoil that has two degrees of freedom including pitch and plunge
motions. The plunge and pitch motions are measured at the elastic axis which are denoted by h and α, respectively. The
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Table 1: Concentrated typical section parameters of the aeroelastic wing
span Wing span (m) 0.5
b Wing semi-chord (m) 0.125
a Position of elastic axis relative to the semi-chord -0.5
ρp Air density (kg/m3) 1.1
mw Mass of the wing (kg) 1.716
mT Mass of wing and supports (kg) 3.53
r2α radius of gyration square (kgm2) 0.53
ωα natural frequency of pitch (rad/s) 17.16
ωh natural frequency of plunge (rad/s) 30.72
xα Nondimensional distance between center of gravity and elastic axis 0.66

distance from the elastic axis to mid-chord is represented by ab where a is a constant and b is the semi-chord length of
the entire airfoil section. The mass center of the entire airfoil is located at a distance xαb from the elastic axis. The two
spring forces for plunge and pitch are represented by kh and kα, respectively. The viscous damping forces are described
through the coefficients ch and cα for plunge and pitch, respectively. Finally, U is used to denote the freestream velocity.
Using Lagrange’s equations, the equations of motion governing this system are written as:

Figure 1: Schematic of an aeroelastic system under uniform airflow
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where mT is the mass of the entire system (wing and support), mw is the wing mass alone, Iα is the mass moment of
inertia about the elastic axis. The values of these parameters used in the following analysis are given in Table 1. In
addition, L and M are the aerodynamic lift and moment about the elastic axis. F (α) is a function used to represent the
pitch nonlinearity in the system.

The function F (α) has the effect of a hardening pitch, and can be used to introduce an offset angle of attack by
changing the term a0 in the F (α) equation, given by:

F (α) = a0 + a3α
3 (2)

This feature is shown in 2 as obtained by using Eq. (2)

3. Representation of the aerodynamic loads

The aerodynamic loads are modeled using Theodorsen approach Theodorsen (1935), where the unsteady aerodynamic
forces and moments are written respectively as:

L = πρb2
[
ḧ+ Uα̇− baα̈

]
+ 2πρUbQC +G(α) (3)
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Figure 2: Pitch angle versus torque described in Eq. (2), for a3 = 20, a0 = 0 and a0 6= 0
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Figure 3: Lift coefficient versus angle of attack using Theodorsen function (continuous) and using the modified version (discontinuous) with G(α)
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where U is the freesteram velocity, C is the Theodorsen function, and

Q = Uα+ ḣ+ α̇b

(
1

2
− a

)
(5)

The function G(α) in Equation(3) introduce the nonlinear effect of stall. For this analysis, it is given by:

G(α) = g0 + g7α
7 (6)

The effect of G(α) in the CLvs. α plot is shown in figure 3.
The aerodynamic loads given in Eqs. (3) and (4) depend on Theodorsen function C(k), where k = ωb

U is the reduced
frequency of harmonic oscillations. Considering the unsteady effect in the flow, the aerodynamic loads associated with
Theodorsen function can be manipulated by convolution based on Duhamel formulation in the time domain Edwards
et al. (1979); Trickey et al. (2002); Vasconcellos et al. (2012). Using the Sears and Pade approximations, the unsteady
representation of the aerodynamic loads are modeled as follows Abdelkefi et al. (2012):

L = πρb2
[
ḧ+ Uα̇− baα̈

]
+ 2πρUb(c0− c1− c3)Q+ 2πρU3c2c4(c1 + c3)x̄+ 2πρU2b(c1c2 + c3c4) ˙̄x+G(α) (7)

and

Mα = πρb2
[
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(8)

where c0 = 1, c1 = 0.165, c2 = 0.0455, c3 = 0.335, and c4 = 0.3. These coefficients are present due to the Sears
approximation to the Wagner function. x̄ and ˙̄x are two augmented variables in the state space. They are related to the
system variables by the following second-order differential equation:

¨̄x = −c2c4
U2

b2
x̄− (c2 + c4)
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b
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b
α+ (
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2
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(9)
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More details for the derivation of the aerodynamic loads based on the Duhamel formulation can be found in Abdelkefi
et al. Abdelkefi et al. (2012).

4. NONLINEAR RESULTS

The simulations were carried out for two defined conditions. The first one is for a typical section with symmetric cubic
stiffness. As the wind speed increases, the system cross the linear flutter boundary and start to oscillate in a Limit Cicle
Oscillation (LCO) induced by the hardening stiffness. At the beginning, the oscillations has relatively low amplitudes, but
as the speed increase, the amplitudes start to become large enough and the system faces stall effects.

In the second condition, the wing is positioned with an offset angle of attack. Again the amplitudes at the beginning
are relatively low, but at higher speeds, the stall effects appears.

4.1 Condition 1: Symmetric hardening

In this condition, the term a0 in Equation 2 is set to zero. The flutter speed for this system is around 8.7m/s. The
behavior will be analyzed for two speeds, the first one just after the flutter (at 8.8m/s) and for higher speed (15m/s).

Figure 4 present the time series at 8.8m/s. is possible to observe limited amplitude oscillations with a subharmonic
component and the maximum amplitude around 12 degrees.
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Figure 4: Time series of angle of attack at 8.8m/s and symmetric hardening

Figures 5 present the phase portrait and the power spectrum for this first configuration, as can be observed, the cubic
harmonic is present, with sidebands around the main peaks.
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Figure 5: (a) Phase portrait and (b) Power spectrum with symmetric hardening at 8.8m/s

The same analysis follows to a speed of 15m/s. Figure 6 present the time series at 15m/s. is possible to observe higher
amplitudes and a overall change in behavior.

Figures 7 present the phase portrait and the power spectrum for this second configuration.
One can observe that stronger super-harmonics show up when the speed is higher, but also, some quadratic terms

appear in figure 7(b) around 6Hz and 12Hz.

4.2 Condition 2: Offset angle and hardening

In this condition, the term a0 in Equation 2 is set to introduce an offset angle of 5 degrees. Again, the behavior will be
analyzed for two speeds, the first one just after the flutter (at 8.8m/s) and for higher speed (15m/s).
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Figure 6: Time series of angle of attack at 15m/s and symmetric hardening
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Figure 7: (a) Phase portrait and (b) Power spectrum with symmetric hardening at 15m/s

Figure 8 present the time series at 8.8m/s. Again, is possible to observe limited amplitude oscillations with a subhar-
monic component and the asymmetric amplitude between around -12 degrees and 10 degrees.
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Figure 8: Time series of angle of attack at 8.8m/s with 5 deg. offset angle and hardening

Figures 9 present the phase portrait and the power spectrum for this first speed.
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Figure 9: (a) Phase portrait and (b) Power spectrum with 5 deg. offset angle and hardening at 8.8m/s

The same analysis follows to a speed of 15m/s. Figure 10 present the time series at 15m/s. is possible to observe
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higher amplitudes and a well defined change in behavior.
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Figure 10: Time series of angle of attack at 15m/s with 5 deg. offset angle and hardening

Figures 11 present the phase portrait and the power spectrum for this second configuration.
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Figure 11: (a) Phase portrait and (b) Power spectrum with 5 deg. offset angle and hardening at 15m/s

Is possible to observe strong harmonic generation as consequence of the offset angle and the higher amplitudes reached
by the system in figure 11(b). These harmonic generation are result of the nonlinear couplings between different internal
frequencies.

4.3 Higher order Spectral analysis -(HOS)

The autobicoherence is now applied for the Condition 2, with offset angle hardening at tree different speeds, in order
to visualize the evolution of the nonlinear quadratic couplings with freestream increase.

As observed in figure 12, nonlinear quadratic coupling exist at all tree investigated speeds. For the first investigated
speed, namely, 8.8m/s, is possible to observe couplings between the main frequency (aroud 3,25Hz) and its quadratic
and cubic harmonics (6,5Hz and 9,75Hz) in figure 12(a). As the speed increases and as a result of harmonic couplings,
new harmonics and subharmonics are generated, increasing the number of frequencies in the system, as observed in
figures 12(b) and 12(c). Is is expected that for higher speeds, more frequencies will be generated, resulting in a broadband
spectrum and this system will probably become chaotic.

5. CONCLUDING REMARKS

The effects of a symmetric and asymmetric hardening pitch nonlinearity in a pitch/plunge typical section at high angle
of attack were investigated in this work. It was found that the combination of asymmetric pitch and stall effect can lead to a
very complex scenario of nonlinear aeroelastic oscillations with several nonlinear couplings between natural frequencies,
subharmonics and superharmonics, with increase of actuating frequencies as freestream speed increases. Further analysis
are planned for experimental validation of observed results and to explore the system at higher speeds, where probably
chaotic behavior will take place.
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Figure 12: Auto-bicoherence contour plot (level 0.99) at (a) 8.8m/s (b) 13m/s and (c) 15m/s
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