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Abstract. Non-linear effects can degrade the aeroelastic behavior of aeronautical structures, leading to a broad range
of adverse features. The presence of nonlinearities in aeroelastic analysis can be originated from both aerodynamic and
structural sources. Compressibility, separated flows, aerodynamic heating and turbulence effects are some important
aspects that result in non-linear aerodynamic behavior. Focusing on structural non-linearities they can be subdivided into
distributed and concentrated ones. Distributed non-linearities are spread over the entire structure and may be related to
material properties and/or large deformations. Concentrated non-linearities act locally, typically associated with loose
attachments, friction, and worn hinges, for instance. These non-linearities can be approximated by classical non-linearity
modeling, namely, polynomial fitting, free-play and hysteresis, or by a combination of those. This work presents an
aeroelastic analysis of a finite wing model with control surface hinge free-play. An unsteady aerodynamics model based
on the vortex lattice method is used to couple with rigid control surface equation of motion. During simulations the wing
main structure is also assumed rigid and fixed at a determined angle of attack, while the control surface reacts depending
on the non-linear stiffness and damping parameters at its hinge. Aeroelastic evolutions are investigated to capture LCO
and other non-linear phenomena. Techniques from time series theory, frequency domain analysis and the determination
of Poincaré maps from reconstructed space state are also used.
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1. INTRODUCTION

In some aeroelastic analyses linear aerodynamics and structures are adopted and the problem is reduced to the solution
of a set of linear differential equations. The results are quite accurate for a specific range of velocities and structural con-
ditions. However, aerospace systems are inherently non-linear (Dowell et al., 1978). The presence of these nonlinearities
will modify the behavior of the system, neglecting some results obtained from the linear approach. For example, it is
shown that the classical linear flutter behavior at a critical velocity can be converted into a periodic or chaotic motion
when the non-linear analysis is assumed, i.e. the short term damages of the linear flutter are converted into long term
non-linear effects (Lee and Kim, 1995).

The presence of nonlinearities in aeroelastic analysis can be divided into aerodynamic and structural properties. A
nonlinear aeroelastic system can have both non-linear properties simultaneously or only one of these properties at a time.
Compressibility, separated flows, aerodynamic heating and turbulence effects are important aspects that result in non-
linear aerodynamic behavior; nonetheless, their modeling still is a considerable challenge and will not be treated in this
paper. Lee et al. (1999) show a comprehensive study of the different types of aerodynamic nonlinearities present on
aeroelastic systems.

In terms of structural properties the effect of aging, loose attachments, certain material features, large motions or
deformations are examples of nonlinearities to be considered. Structural nonlinearities can be subdivided into distributed
and concentrated ones. Distributed nonlinearities are spread over the entire structure representing the characteristic of
materials and large motions, for example (Patil and Hodges, 2004; Brown, 2003). Concentrated nonlinearities act locally,
representing loose of attachments, worn hinges of control surfaces, aging, and presence of external stores (Lee et al.,
1999; O’Neil and Strganac, 1998; Conner et al., 1997). The concentrated nonlinearities can usually be approximated by
one of the classical structural nonlinearities, namely, cubic, free-play and hysteresis, or by a combination of these, for
example, a free-play and a cubic one.

In general a non-linear aeroelastic system has four types of responses, i.e., flutter, divergence, limit cycle oscillation
(LCO) and chaotic motion (Lee and Kim, 1995). The LCO is a periodic oscillation consisting of a limited number of
frequencies and amplitudes. The chaotic motion is a non-periodic oscillation consisting of a multitude of frequencies and
amplitudes. In some cases the LCO and the chaotic motion can occur at a flow speed lower than the linear flutter speed,
showing the importance of the non-linear assumption in aeroelastic analyses.

Many authors have examined the non-linear aeroelastic behavior. Free-play, hysteresis, and cubic stiffness nonlineari-
ties are examined considering a 2 dof typical section using Wagner indicial function to represent the linear aerodynamics.
It is shown that flutter velocity can be reduced by an increase in initial displacements when free-play and hysteresis cases
are considered in the airfoil rotation. They also found limit cycle oscillations (LCOs) bellow the linear flutter boundary
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when cubic hardening cases are considered. Free-play non-linearity for the torsion mode considering linear and non-linear
aerodynamic models is also investigated by some authors (Tang and Dowell, 1993). The linear aerodynamics was mod-
eled using the Theodorsen function, what is valid when harmonic motion is assumed. In some cases, aeroelastic analysis
of a two-dimensional airfoil section with combined non-linearity of free-play and cubic stiffening in torsion are performed
(Zhao and Hu, 2004).

Typical dynamical system responses can be assessed by means of reconstructing the state space from time series
using the so-called method of singular value decomposition (SVD) (Broomhead and King, 1986). The SVD uses the
properties of covariance matrix to produce uncorrelated coordinates, as result of the process, the data is filtered, avoiding
complications caused by the noise, always present in experimental data. With reconstructed state spaces it is possible to
identify structures associated to limit-cycle oscillations (LCO) and chaos (Nayfeh and Balachandran, 1995; Vasconcellos,
2007). Chaotic behavior may be characterized by the divergence between neighbor trajectories in state space (Hilborn,
2000). The assessment of Lyapunov exponents can be used to quantify this divergence (Nayfeh and Balachandran, 1995).

This paper presents the study of non-linear aeroelastic behavior of wing control surface with hinge free-play. The
model comprises a finite wing with control surface (aileron) both considered as rigid body. The aeroelastic behavior is
obtained by the control surface motion restrained by the hinge stiffness. The aeroelastic response is related to one degree
of freedom problem and nonlinearity is introduced by assuming free-play ate the control surface hinge. Aerodynamic
model is based on the unsteady vortex lattice method. Aeroelastic responses are obtained via numerical solution of the
motion equation at each time step using a forth order Runge-Kutta method, together with Henon’s approach to account
for the discontinuities associated to the free-play nonlinearity. The investigation of the non-linear responses is achieved
by simulating the aeroelastic system and verifying the dynamics embedded in the control surface angle, particularly for
limit cycle oscillations. Frequency domain analysis is also presented revealing multiple harmonics. Finally, a Poincaré
mapping is performed for a range of freestream velocities, in order to observe jumps and bifurcations.

2. AEROELASTIC MODEL

This work considers the aeroelastic responses of wing control surface alone due to unsteady aerodynamic loading.
Therefore the wing main structure is admitted rigid and fixed in space at a particular angle of attack. Control surface
angular reactions can be modeled as one degree of freedom problem, admitting this as rigid body.

The one dof control surface equation of motion is given by,

Iδ̈(t) + Cδ̇(t) +Kf(δ(t)) = H(t) , (1)

where I is the control surface inertia moment with respect to the hinge, C is the damping factor, K is the stiffness at the
control surface hinge, H(t) is the hinge moment (aerodynamic term), δ(t) is the control surface angular deflection, and
f(δ(t)) represents a non-linear function applied to the control surface deflection.

In Eq. (1), the last term in the left-hand side of the equation, that is, Kf(δ(t)), indicates the non-linear control surface
restoring moment. Here this non-linear effect is dictated by free-play, which is represented by, f(δ(t)) = δ(t) + δfp if δ(t) < −δfp

f(δ(t)) = δ(t)− δfp if δ(t) > δfp
f(δ(t)) = 0.0 if −δfp < δ(t) < δfp

, (2)

where δfp is the free-play angle, thus the free-play size is 2δfp.
Aeroelastic solution in time domain requires numerical integration of coupled structural and aerodynamic models.

Assuming that the aerodynamic loading in instant t is included to Eq. (1), the Runge-Kutta method can be used to time
integration. A drawback of Runge-Kutta method, when free-play model is presented in the equation of motion, is a failure
to cope with discontinuities. The origin of the problem is in the need for time derivatives computation during Runge-Kutta
integration. When free-play edges are reached, great error in the derivatives occurs.

A solution for this problem has been successfully suggested and presented by Conner et al. (1997). They suggested
the use of Henon approach (Henon, 1982) to avoid missing the correct time responses at the discontinuities. Henon’s
method is originally applied to explore and precisely get the Poincaré points for constructing the Poincaré mapping. The
methodology is based on proceeding the conventional Runge-Kutta integration out of the free-play edges. When a free-
play edge is encountered, the Runge-Kutta integration is inverted to present the states exactly at the discontinuity. Next
integration point uses the recovered states at the discontinuity as condition to return to the conventional time integration.

2.1 Unsteady Vortex Lattice Method

The unsteady vortex lattice method (UVLM) consists of distributing plane vortex singularities over a lifting surface
and its wake (Katz and Plotkin, 1991). The plane vortex singularities satisfy the Laplace equation and when it is combined
with the uniform stream incompressible and potential flows around the wing the aerodynamic loading can be calculated.
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Here, to implement the VLM, the wing has been represented by a lifting surface without thickness and discretized in
quadrilateral elements (panels). A vortex ring is associated with each panel, being the leading segment of each vortex ring
placed on the panel quarter chord line and its control point placed at the center of the three-quarter chord line. The wing
discretization scheme is shown in Fig. 1. To guarantee that the flow streamlines pass over the lifting surface, it is necessary
to satisfy the boundary condition of zero normal velocity on the wing surface. This boundary condition is applied at the
control points and it results in the correct values for the vortex singularities (circulation Γ).

Figure 1. Wing discretization scheme (Katz and Plotkin, 1991).

The boundary condition in each panel can be expressed as

(∇φ+ vm + vw) · {n} = 0 , (3)

where the gradient of the potential velocity φ corresponds to the perturbed velocities induced by the wing vortex singu-
larities, vm corresponds to the velocity of the wing motion (the freestream velocity relative to the wing plus the velocities
of the wing structural deformations), vw corresponds to the velocities induced by the wake, and n is the normal vector.

The velocity V induced by each straight vortex segment, extending from point 1 to point 2, at an arbitrary point P ,
obeys the Biot-Savart law, that is:

V =
Γ

4π

r1 × r2
|r1 × r2|2

(r1 − r2) ·
(
r1
|r1|
− r2
|r2|

)
, (4)

where, r1 and r2 are the vectors that define the position of point P in relation to the points 1 and 2.
It is important to note that the value of the circulation Γ is still not known in Eq. (4). So, only the values of the other

terms will be calculated. This is done by assuming Γ = 1. The velocity induced by each vortex ring at a point P is
obtained adding the results obtained with Eq. (4) for the four corresponding vortex segments. The velocity is referred as
the velocity induced by the vortex ring L on the control point K. Applying the zero normal velocity boundary condition
at the control point K = 1,

(V11Γ1 + V12Γ2 + V13Γ3 + . . .+ V1mΓm + vm1 + vw1) · n1 = 0 , (5)

where the circulations in each vortex ring are the unknowns and m is the number of panels used in the wing aerodynamic
discretization.

Based on Eq. (5), the so-called influence coefficients (aKL = VKL · nk) can be defined. Re-writing this equation as a
function of the influence coefficients for each of the m control points and passing vm and vw to the right-hand side (RHS)
of the equation, the following linear system is obtained:

a11 a12 · · · a1m
a21 a22 · · · a2m

...
...

. . .
...

am1 am2 · · · amm




Γ1

Γ2

...
Γm

 = −


vm1 + vw1

vm2 + vw2

...
vmm + vwm

 ·


n1
n2
...
nm

 . (6)

The evaluation of vm consists of two steps: 1) the freestream velocity is obtained moving the wing in the aft direction,
and 2) the velocities of the structural deformations are obtained solving the equation of motion (cf. Eq. (1)). The velocities
induced by the wake (vw vector) are obtained employing the Biot-Savart law (Eq. (4)). It is important to consider that a
portion of the wake is generated at each time interval, according to Fig. 2. The circulation values of the last vortex rings
generated are the same as those of the trailing edge vortex rings, to satisfy the three-dimensional Kutta condition. Thus,
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Figure 2. Wake discretization scheme (Katz and Plotkin, 1991).

at each time interval new vortex rings are generated and the corresponding values of circulation are found. The value of
circulation of each wake vortex ring remains the same during all the simulation time. In the present simulation, the wake
rollup has not been considered, so the wake is parallel to the freestream velocity plane.

The solution of the linear system given by Eq. (6) provides the circulation values for the wing vortex rings, which has
been employed for the aerodynamic loads calculation. The unsteady Bernoulli equation for each panel is:

pl − pu
ρ

=
V 2
u

2
− V 2

l

2
+
∂φu
∂t
− ∂φl

∂t
, (7)

where p is the static pressure and the subscripts u and l refer to the upper and lower sides of the panel.
The last two terms in Eq. (7) refer to the unsteady case. The difference between them is obtained from the definition

of circulation, that is:

∂φu
∂t
− ∂φl

∂t
=
∂(φu − φl)

∂t
=
∂Γ

∂t
=

Γ(t)− Γ(t− 1)

∆t
. (8)

If ∂Γ/∂t = 0, Eq. (7) is analogous to the classical Bernoulli equation for the steady case, and the first two terms can
be determined with the aid of the Kutta-Joukowski theorem, that is:

V 2
u

2
− V 2

l

2
=
V∞Γ∆bcosα

S
, (9)

where V∞ is the free stream velocity, α is the local angle of attack, ∆b is the length of the panel in the spanwise direction
and S is the panel area.

Substituting Eqs. (8) and (9) into Eq. (7), the pressure difference ∆pj for the jth panel can be determined, which leads
directly to the aerodynamic loading terms (normal or lift forces and moments with respect to a reference point) (Katz and
Plotkin, 1991).

2.2 Dynamic analysis techniques: the Poincaré mapping

A powerful tool for the verification of complex dynamics, in particular, to identify chaotic patterns is Poincaré map-
ping. The Poincaré section of the state space dynamics simplifies the geometric description of the dynamics by removing
one of the state space dimensions. For instance, a three-dimensional state space presents the Poincaré section as a two-
dimensional plane chosen in such way that the trajectories intersect it transversely.

The key point is that this simplified geometry contains the essential information about the periodicity, quasi-periodicity,
chaocity and bifurcations of the system dynamics (Hilborn, 2000). Bifurcation in this case, is the term used to describe
any sudden change in the dynamics of the system due to the respective parametric change. Therefore, for any change
on the attractor geometry with a parameter variation, bifurcations can be visualized by plotting one Poincaré section
for each parameter value. The Poincaré section computation has been based on Merkwirth et al. (1998) and Kantz and
Schreiber (2004), which proposes the section extracted directly from an embedded time series. The result is a set of
(n-1)-dimensional vector points, used to perform an orthogonal projection.

3. CONTROL SURFACE NON-LINEAR AEROELASTIC ANALYSIS

Aeroelastic simulations are performed for geometric and aerodynamic parameters as presented in Tab. 1. Those
parameters have been based on data from literature and other values encountered in the work of Eller (2006) (based
on ASK 21 glider). The aerodynamic model has been discretized using 15 panels spanwise and 20 panels chordwise,
assuming rectangular wing geometry. For the control surface, the discretization corresponds to 5 chordwise per 5 spanwise
panels, located at the wing tip trailing edge. The hinge line is assumed at the edges of the panels.
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Table 1. Parameters for aeroelastic simulations

Description Value
Wing chord 1.058m
Wing semi-span 8.5m
Wing angle of attack 0◦

Control surface inertia moment (I) 0.0336 kg
m2

Damping factor (C) 2.8Ns
Hinge stiffness (K) 17Nmrad
Control surface initial angle (δ0) 0.1◦

Freeplay angle (δfp) 0.3◦

Time sampling 0.005s

To check the aerodynamic solution for the unsteady problem alone, simulations have been performed for some typical
control surface motions. The Fig. 3 presents two illustrations of unsteady aerodynamic solution for fixed control surface
sudden wing forward acceleration (cf. Fig. 3(a)) and for oscillating control surface (cf. Fig. 3(b)). The wake arrangement
due to the unsteady motion of the wing clearly shows the efficiency of the UVLM to cope with respective aerodynamic
features.

(a) Fixed control (b) Oscillating control

Figure 3. Control surface wake evolution in time for prescribed motion.

Aeroelastic simulations have been performed for a range of airspeeds from 5.0 to 45.0ms . Particularly, for this range
all simulations have revealed limit cycles oscillatory motions. Figure 4 present the time histories of δ(t) for some of
the freestream velocities, depicting the typical LCO. As airflow velocity varies, it is clear from Fig. 4 the evolution on
aeroelastic response amplitude and frequency composition of each resulting LCO.
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Figure 4. Control surface time responses for varying airspeed.
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Other form of inspecting the LCO behavior is by plotting the phase plane (δ× dδ
dt )t for each aeroelastic signal attained

during simulations at different airspeeds. These results are presented in the Fig. 5, which also can be used to identify
complex features as the system evolves with the freestream velocity. These facts may also indicate that bifurcations and
other complex non-linear behavior are present during aeroelastic evolution.
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Figure 5. Phase plane of control surface response for varying airspeed.

In Fig. 6, the LCO amplitude values per airflow velocity is shown, which indicates a dramatic increase on their values
after 35.0ms . Such outcome allows to infer that bifurcation phenomenon has occurred. However, the values for control
surface angles at 40.0 and 45.0ms are large enough to start compromising the aerodynamic results. Although for the non-
linear analysis those values may be reasonable representations of possible physical features that are not validated in this
preliminary work on control surface free-play.
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Figure 6. LCO amplitude (rms) evolution with increasing airspeed.

A frequency decomposition to the aeroelastic signals has been also executed with results presented in Fig. 7. Here
the frequency content of each case clearly show the typical multiple harmonics behavior of LCO signal. The results
also reinforce the conjecture that bifurcation is presented to the aeroelastic behavior of the control surface responses by
inspect the sudden change in frequency content at around 30.0ms . Typically, the evolution from that airspeed would show
higher multiple harmonic composition. The authors infer the this features has been not observed due to need for longer
simulations that has been achieved so far by this working group.
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Figure 7. Control surface dynamics evolution with respect to airspeed in frequency domain.

Finally, Poincaré maps have been prepared for each freestream velocity. All mappings are presented in Fig. 8, which
also reveals changes in the system behavior from around 30.0ms . One may conclude that bifurcation really happens at that
condition, now reinforced by the Poincaré mapping analysis. Figure 9 complements the Poincaré analysis by showing
details for four different airflow velocities. Here detailed maps also help the observe particular structures not easily
highlighted in Fig. 8.
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4. CONCLUDING REMARKS

This work has presented an aeroelastic analysis of a finite wing model with control surface hinge free-play. The
aeroelastic model is attained by coupling an unsteady aerodynamics model based on the vortex lattice method with one
dof control surface equation of motion. During simulations the wing main structure is also assumed rigid and fixed at
an angle of attack, while the control surface reacts depending on the non-linear stiffness and damping parameters at its
hinge due to free-play. Aeroelastic evolutions have been investigated to capture LCO and other non-linear phenomena.
Aeroelastic simulations for a range o freestream velocities have shown limit cycle oscillations of increasing amplitude as
the airflow velocities increase. The frequency domain analysis has revealed multiple harmonics associated to the control
surface signals, which is characteristics of LCO responses. Poincaré mappings have been also assessed, which has allowed
to verify a jump phenomena at 35ms . Future developments consider complete geometric and flow parameters sensitivity
analysis. Moreover, improvements to the aerodynamic model is necessary to allow better meshing. Flexible wing model
is also further effort is this research.
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