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Abstract. Turbulent natural convection of air that happens into inner square cavity with localized heating from horizontal 
bottom surface has been numerically investigated. Localized heating is simulated by a centrally located heat source on the 
bottom wall, and two values of the dimensionless heat source length are considered in this present work. Solutions are 
obtained for several Rayleigh numbers with Prandtl number 0.7. The horizontal top surface is thermally insulated and the 
vertical surfaces are assumed to be the cold isothermal surfaces whereas the heat source on the bottom wall is isothermally 
heated. In this study, the Navier-Stokes equations are used considering a two-dimensional and turbulent flow in the 
unsteady state. The Finite Element Method (FEM) with a Galerkin scheme is considered for solving the conservation 
equations. The formulation of the conservation equations is carried out for turbulent flow and the  turbulence is modeled 
using Large-Eddy Simulation (LES). The stream function and temperature distributions are determined as functions of 
thermal and geometrical parameters. The average Nusselt number is shown to increase with an increase in the Rayleigh 
number as well as in the dimensionless heat source length. The results of this work can be applied to the design of 
electronic components. 
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1. Introduction 
 

Natural convection in enclosures is an area of interest due to its wide application and great importance in 
engineering. Transient natural convection flows occur in many technological and industrial applications. Therefore, it is 
important to understand the heat transfer characteristics of natural convection in an enclosure. 

Along the years, researchers have looked for more flows with the objective to approximate the real case found in 
geophysical or industrial means. Then, we can define four basic types of boundary conditions. They are: the natural 
convection due to a uniformly heated wall (with a temperature or a constant heat flux); the natural convection induced 
by a local heat source; the natural convection under multiple heat sources with the same strength and type; and the 
natural convection conjugated with inner heat-generating conductive body or conductive walls. The boundary 
conditions mentioned previously are based on a single temperature difference between the differentially heated walls. 
Most of the previous studies have addressed natural convection in enclosures due to either a horizontally or vertically 
imposed temperature difference. However, departures from this basic situation are often encountered in fields such as 
electronics cooling. The cooling of electronic components is essential for their reliable performance. 

The characteristics of fluid flow and heat transfer under the multiple temperature differences are more complicated 
and have a practical importance in thermal management and design. 

In the present work, a two-dimensional numerical simulation in a cavity is carried out for a turbulent flow. The 
turbulence study is a complex and challenging assumption. There are few works in literature that deal with natural 
convection in closed cavities using the turbulence model LES. The motivation to accomplish this work relies on the fact 
that there are a great number of problems in engineering that can use this geometry. One turbulence model is 
implemented here together with the finite element method.  

A large eddy simulation (LES) seems a promising approach for the analysis of the high Grashof number turbulence 
that contains three-dimensional and unsteady characteristics. A direct simulation of turbulence gives us more accurate 
and precise data than experiments; it is essentially unsuitable for high Grashof number flows because of computational 



limitations. It is known that the LES enables an accurate prediction of turbulence, but spends much less CPU time than 
the direct simulation. 

In literature, a large number of theoretical and experimental investigations are reported on natural convection in 
enclosures. 

Natural convection of air in a two-dimensional rectangular enclosure with localized heating from below and 
symmetrical cooling from the sides was numerically investigated by Aydin and Yang (2000). Localized heating was 
simulated by a centrally located heat source on the bottom wall, and four different values of the dimensionless heat 
source length, 1/5, 2/5, 3/5 and 4/5 were considered. Solutions were obtained for Rayleigh number values from 103 to 
106. The average Nusselt number at the heated part of the lower wall, Nu , was shown to increase with an increase of 
the Rayleigh number, Ra, or of the dimensionless heat source length, ∈. 

Peng and Davidson (2001) studied the turbulent natural convection in a closed enclosure whose vertical lateral walls 
were maintained at different temperatures. Both the Smagorinsk and the dynamic models were applied to the turbulence 
simulation. Peng and Davidson (2001) modified the Smagorinsk model by adding the buoyancy term to the turbulent 
viscosity calculation. This model would be called the Smagorinsk model with buoyancy term. The computed results 
were compared to experimental data and showed a stable thermal stratification under a low turbulence level                    
(Ra = 1.58 × 109). 

It was performed in the work of Oliveira and Menon (2002), a numerical study of turbulent natural convection in 
square enclosures. The finite volume method together with LES was used. The enclosure lateral surfaces were kept to 
different isothermal temperatures and the upper and lower surfaces were isolated. The flow was studied for low 
Rayleigh numbers Ra = 1.58 × 109. Three turbulence LES models were used.  

Ampofo and Karayiannis (2003) conducted an experimental study of low-level turbulence natural convection in an 
air filled vertical square cavity. The cavity was 0.75 m high × 1.5 m deep giving rise to a 2D flow. The hot and cold 
walls of the cavity were isothermal at 50 and 10 ºC respectively, that is, a Rayleigh number equals to 1.58 × 109. The 
experiments that were realized on Ampofo work and Karayiannis (2003) were conducted with very high accuracy and 
as such the results formed experimental benchmark data and were useful for validation of computational fluid dynamics 
codes. 

In the present work, turbulent natural convection of air that happens into inner square cavity with localized heating 
from horizontal bottom surface has been numerically investigated. The objective of the analyses of heat transfer is to 
investigate the Nusselt number distribution on the vertical walls and heated lower horizontal surface. Another objective 
is to verify the effect of height variation I of the horizontal heated lower surface on the turbulent flow. Six cases are 
studied numerically. The Rayleigh number Ra is varied and so is the dimensionless length of the heat source∈, where  
(1 − ∈)/2 ≤ x ≤ (1 + ∈)/2 and x is the coordinate component in the x direction. For the cases 1, 2 and 3, the dimension ∈ 
is fixed in ∈ = 0.4 and the Rayleigh numbers Ra is varied (Ra = 107, 108, 109). For the cases 1, 2, and 3, it is used a non-
structured mesh of finite elements with 5,617 triangle elements with 2,908 nodal points. The other cases also used a 
non-structured mesh of finite elements with linear triangle elements. In cases 4, 5, and 6, ∈ is fixed in ∈ = 0.8. The 
cases 1 and 4, 2 and 5 and; 3 and 6 are simulated, respectively, for Ra = 107, 108 and 109. The cases 4, 5, and 6 are 
simulated with one mesh with 5,828 elements and 3,015 nodes. The turbulence model used in all cases is the Large-
Eddy Simulation (LES) with the second-order structure-function sub-grid scale model (F2). It is adopted a geometry 
with an aspect ratio A = H/L = 1.0. Comparisons are made with experimental data and numerical results found in Tian 
and Karyiannis (2000), Oliveira and Menon (2002), Lankhorst (1991) and Cesini et al. (1999). 
 
2. Problem Description  
 

Figure 1 shows the geometry with the domain Ω. It will be considered a square cavity. The upper horizontal surface 
S4 is thermally insulated and the vertical surfaces S1 and S3 are assumed to be the cold isothermal surfaces. The bottom 
horizontal surfaces S5 and S6 are also thermally insulated. Localized heating is simulated by a centrally located heat 
source on the bottom wall, S2. The initial condition in Ω is: T = 0 with ψ = ω = 0. All physical properties of the fluid are 
constant except the density in the buoyancy term where it obeys the Boussinesq approximation. It is assumed that the 
third dimension of the cavities is large enough so that the flow and heat transfer are two-dimensional. 

The following hypotheses are employed in the present work: unsteady turbulent regime; incompressible two-
dimensional flow; constant fluid physical properties, except the density in the buoyancy terms. 

Figure 2 shows one of the meshes used in the numerical simulations of the present work. 
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Figure 1: Cavity geometry. Figure 2: Mesh arrangement for cases 1, 2 and 3. 
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3. Theory of Sub-Grid Scale Modeling 
 

The governing conservation equations are: 
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where xi are the axial coordinates x and y, ui are the velocity components, p is the pressure, T is the temperature, ρ is the 
fluid density, ν is the kinematics viscosity, g is the gravity acceleration, β is the fluid volumetric expansion coefficient, 
δ2j is the Kronecker delta, α is the thermal diffusivity, and S the source term. The last term in Eq. (2) is the Boussinesq 
buoyancy term where T0 is the reference temperature. 

In the large eddy simulation (LES), a variable decomposition similar to the one in the Reynolds decomposition is 
performed, where the quantity ϕ is split as follows: 
 

'φφφ += , (4) 
 
where φ  is the large eddy component and  is the small eddy component. 'φ

The following filtered conservation equations are shown after applying the filtering operation to Eq. (1) to (3). This 
is done by using the volume filter function presented in Krajnovic (1998). The density is constant. 
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where xi are the axial coordinates x and y, ui are the velocity components, p is the pressure, T is the temperature, ρ is the 
fluid density, ν is the kinematics viscosity, g is the gravity acceleration, β is the fluid volumetric expansion coefficient, 
δ2j is the Kronecker delta, α is the thermal diffusivity, and S the source term. The last term in Eq. (2) is the Boussinesq 
buoyancy term where T0 is the reference temperature. In Eq. (5) to (7), jiuu  and Tu j  are the filtered variable products 
that describe the turbulent momentum transport and the heat transport, respectively, between the large and sub-grid 
scales. According to Oliveira and Menon (2002), the products jiuu  and Tu j are split into other terms by including the 
Leonard Lij tensor, the Crossing tensor Cij, the Reynolds sub-grid tensor Rij, the Leonard turbulent flux Lθj, the Crossing 
turbulent flux Cθj and the sub-grid turbulent flux θj. The Crossing and Leonard terms, according to Padilla (2000), can 
be neglected. After the development shown in Oliveira and Menon (2002), the following conservation equations are 
obtained: 
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where, Pr is the Prandtl number with α = ν/Pr.  
 
3.1 Sub-grid scale model  
 

According to Silveira Neto (1998), the Reynolds tensor is defined as: 
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where νT is the turbulent kinematics viscosity, δij is the Kronecker delta and ijS  is deformation tensor rate. 

Substituting ijS  in τij and having some manipulation, it follows that the momentum and energy equations are: 
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where αT, PrT, c, ℓ, q, ∆1 and ∆2 are, respectively, the turbulent thermal diffusivity, the turbulent Prandtl number, a 
dimensionless constant, the scale lengths, the velocity, the filter lengths in x and y directions, respectively. 
 
3.2 The second-order structure-function sub-grid scale model (F2) 
 

The turbulent viscosity (νT) and the geometric mean of distances di (∆) are calculated as follows: 
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where Ck = 1.4 is the Kolmogorov constant (Kolmogorov, 1941), the variable ∆ is the geometric mean of distances di 
from neighboring elements to the point where νT is calculated and ( )t,,xF2 ∆

r
 is the structure function of second order 

velocities. According to Kolmogorov (1941) law the structure function can be calculated as: 
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r r  are the velocities at the point “i” of the neighboring centroid placed at a 

distance di from the target point, ( )u x ,tr  and ( )x ,tυ r  are the velocities at this point of the element, N is the number of 
points from the neighborhood, t is the time and ie

r  the vector on di direction.  
The turbulent thermal diffusion is estimated from the turbulent kinematics viscosity, by assuming . TPr 0.4=

 
4. Initial and boundary conditions 
 
 From this section on, the upper bars that mean average values will be omitted. Figure 1 pictures the enclosure on 
which the initial boundary conditions are as follows: u(x,y,0) = 0, v(x,y,0) = 0, T(x,y,0) = 0 in Ω, u = v = 0, T = Tc = 0, 
on S1 and S3, u = v = 0, T = Th = 1 on S2, u = v = 0, ∂T/∂y = 0 on S4, S5 and S6. The flow field can be described by the 
stream function ψ and the vorticity ω distributions given by: 
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where u and υ are the velocity components in x and y directions , respectively. Hence, the continuity equation given by 
Eq. (1), is exactly satisfied. Working with dimensionless variables, it is possible to deal with Rayleigh number Ra, 
Prandtl number Pr and the enclosure aspect ratio A given by: 
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where Th and Tc are the surfaces temperatures S2 and S1-S3, respectively, H is the characteristic dimension of the cavity. 
 
5. Numerical method 
 
 Equations (8) to (10) are solved through the finite element method (FEM) with linear triangular elements using the 
Galerkin formulation. The local Nusselt number Nu is defined as: 
 

( ) ( )h cwNu T n H T T= ∂ ∂ − , (18) 
 
where n is the unit vector normal to the surface or boundary where the local Nusselt number Nu is calculated. 

In order to compare the results with the ones found in literature and then to validate the computational code, two 
cases are taken from Brito et al. (2002) and Brito et al. (2003). Brito et al. (2002) and Brito et al. (2003) use the same 
turbulence model LES as the one used in the present work. In the first comparison, the study of the natural turbulent 
flow in a square enclosure with different temperatures for various Rayleigh numbers is carried out in Brito et al. (2002). 
The second comparison is made in Brito et al. (2003) considering a laminar flow in a rectangular enclosure with an 
internal cylinder. Both results are suitable. 
 
6. Results 
 

The main objective of this study is to analyze the influence of Rayleigh Ra number variation and the length of the 
heated horizontal lower surface on the flow field. The geometry is chosen in order to simulate the cooling of the air in 
cavities with electronic components placed on the lower horizontal surface. A Rayleigh number range in a low 
turbulence flow is: Ra = 1.0 × 107, 1.0 × 108 and 1.0 × 109 with Pr = 0.70. The geometry parameters used in the six 
cases mentioned previously are: H = 1.0; L = 1.0; Th = 1; Tc = 0 and A = H/L = 1.0. Figure 3 shows the average Nusselt 
number Num versus time for all six cases. Figure 4 shows the flow fields and the temperature in terms of stream function 
lines ψ, isotherms Tm and velocity vectors ui. The time step ∆t adopted is ∆t = 0.0131 t0, t0 = H/(g β ∆T H)1/2, which due 
to the limitation of the hardware (processor), is three times bigger than the value adopted in Peng and Davidson work 



(2001). In Fig. 3, the average time to obtain the average quantities is from 400 to 600 t0, t = (400-600) t0. Figure 4 
shows the stream function ψ with a line spacing equals to 10 (∆ψ = 10). For the isotherms, we adopt the same line 
spacing equals to ∆Tm = 0.01. The stream function ψ is shown for the last interaction, t = 600 t0. The isotherms are 
calculated at each nodal point considering an average in time, that is, t = (400-600) t0. The same is done to the velocity 
vectors ui. Figure 3 shows the average Nusselt numbers Num calculated on surfaces S1, S2, S3 and S4, versus time t for a 
time range t = (400-600) t0. Figures 3a, 3b, and 3c, show that the higher the Rayleigh number, the higher the convection 
in all cavity surfaces studied for fixed values of ∈. Figures 3d, 3e, and 3f show that heat transfer is higher when the 
Rayleigh number is increased. In Fig. 3f, the Num values oscillate, due to the effect of the turbulence inside the cavity. 
The rates of heat transfer are a little larger than those presented in Figures 3a, 3b, and 3c. In Fig. 3, where Ra = 107, the 
∈ increase does not considerably influence the values of Num. Figures 3b and 3e, for Ra = 108, shows that ∈ increase 
reduces Num on S2. In Figs. 3c and 3f, for Ra = 109, we observe the same behavior found in Figs. 3b and 3e with 
Ra = 108. Then one may conclude that the flow becomes oscillating for Ra = 108 and ∈ = 0.8, and as it can be seen in 
Fig. 3f, the heat transfer rates are larger on all the surfaces, including the upper horizontal surface S4. 
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Figures 3: Num versus t on S1, S2, S3 and S4 with Pr = 0.70, a-c) ∈ = 0.4, d-f) ∈ = 0.8 for t = (400-600) t0. 

 
Figures 4 shows the effect of Rayleigh number where 107 ≤ Ra ≤ 109 and the effect of the dimensionless length of 

heat source for ∈ = 0.4 and 0.8. Due to the symmetrical boundary conditions along the vertical walls, the flow and the 
temperature fields have a relative symmetry in the middle of the cavity. For the temperature field, it can be observed 
that this symmetry is better visualized, because the isotherms are obtained through a time average for t = (400-600) t0. 
These same symmetrical boundary conditions in the vertical direction result in two great fluid areas that symmetrically 
recirculate. As the flow tends to in the oscillating regime for Ra = 109, this symmetry is lost. 

In Figs. 4a, 4b, and 4c, it is noted that the internal fluid recirculation is more significant as Ra increases. For 
Ra = 107, thermal plumes are formed over the hot surface S2. The hot fluid which is in the lower region of the cavity 
moves up due to buoyant forces. During its traveling to the upper part of the cavity, the fluid is cooled on the vertical 
lateral walls. It can be noted in Fig. 4b that with the Ra increase to Ra = 108, a region with lower heat transfer is brought 
about giving rise to a smaller thermal plume. In Fig. 4c, for Ra = 109, practically all the fluid inside the cavity has a 
stable average temperature between the maximum and minimum values stated by the boundary conditions. From Figs. 
4a, 4b, and 4c, the average velocity vectors picture the fluid behavior in the time range t = (400-600) t0. Figures 4d, 4e, 
and 4f show the results for ∈ = 0.8 and Ra between 107 ≤ Ra ≤ 109. For Figs. 4d, 4e, and 4f, where ∈ = 0.8, the increase 
of the heated surface length S2 makes the heat transfer increase in all surfaces. The surface S2 has the reduction of the 
Num value calculated for the range 400 to 600 t0 with Ra = 107. For the isotherms, Figs. 4e and 4f show few differences. 
The streamlines, in Figs. 4d, 4e, and 4f show two big fluid regions that move in opposite directions. 
 
7. Discussion 
 

In this investigation, the results of a numerical study of buoyancy-induced flow and heat transfer in a two-
dimensional square enclosure with localized heating from below and symmetrical cooling from the sides are presented. 
The main parameters of interest are Rayleigh number Ra and the dimensionless heat source length∈. 

One kind of sub-grid scale model is used: large-eddy simulation (LES) with the second-order structure-function sub-
grid scale model (F2) (more details in Silveira Neto, 1998). The conservation equations are discretized by the Galerkin 
finite element method with linear triangular elements. 
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Figure 6: Streamfunction ψ for t = 600 t0 (∆ψ = 10), average temperature, Tm (∆Tm = 0.01) for t = (400-600) t0 and 

velocity vectors for t = (400-600) t0 and Pr = 0.7. 



Two cases are used for validation of the computational domain of the present work. In Brito et al. (2002) and      
Brito et al. (2003), the same turbulence model LES, together with the finite element method, is used in the present work. 

It is observed that increasing Ra, the rate of heat transfer also increased, as expected. For a fixed value of Ra, the ∈ 
increase also increases the heat transfer. For Ra = 109 and ∈ = 0.8, although the flow is considered two-dimensional, it 
is noticed that the flow becomes oscillating in time which is a typical characteristic of a flow in transition to turbulence. 
The average temperature Tm and velocity vectors ui distributions are presented for Rayleigh number 107 ≤ Ra ≤ 109 and 
Prandtl number Pr = 0.70 for t = (400-600) t0. The results of streamfunction ψ distributions are presented for t = 600 t0. 
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